OCR | Wellesley College Digital Repository (2024)


Distinguishing
proximal
and
distal
sources
of
sandstone
by
combining

U-­‐Pb
age,
and
geochemical
signatures
of
detrital
zircon
populations:


An
example
from
the
Permian
Brushy
Canyon
Formation,
West
Texas


Sarah
George

Advisor:
David
Hawkins

Table
of
Contents


ACKNOWLEDGEMENTS


ABSTRACT………………………………………………………………………………………………...…………1

INTRODUCTION…………………………………………………………………………...………………………2

REGIONAL
GEOLOGY……………………………………………………………...…………………………….6

Equatorial
Pangea
and
the
Delaware
Basin…………………………………………………6

Previous
Provenance
Studies
of
the
BCFM…………………………………..……………10

The
Florida
Mountains
and
Rift
Related
Plutons……………………...……………......15

APPROACH………………………………………………………………………………………………………...17


BACKGROUND…………………………………………………………………………………………………...18

U-­‐Pb
Geochronology
and
Geochemistry
of
Zircon……………………………………..18

METHODS………………………………………………………………………………………………………….21

Rock
Sampling
in
the
Field……………………………………………………………………….21

Sample
Preparation…………………………………………………………………………………23

LA-­‐ICPMS………………………………………………………………………………………………..24

RESULTS……………………………………………………………………………………………………………26

Brushy
Canyon
Formation……………………………………………………………………….26

Florida
Mountain
Granite………………………………………………………………………...32

DISCUSSION……………………………………………………………………………………………………….36

REFERENCES
CITED……………….…………………………………………………………...……………..46

APPENDIX

ACKNOWLEDGEMENTS


I
would
like
to
thank
my
crazy
geologist
parents
who
dragged
me
around
the
world

as
a
child,
piquing
my
interest
in
geology.

I
owe
my
Wellesley
friends
a
great
deal
of

gratitude
for
their
tolerance
and
love
throughout
the
process.

I’d
also
like
to
thank

Dr.
Mark
Schmitz
and
Dr.
Jim
Crowley
for
allowing
me
to
use
their
lab
facilities
and

showing
me
the
ropes
of
zircon
geochronology,
as
well
as
Dr.
Jeff
Amato
for

generously
providing
samples
from
the
Florida
Mountain
granite.

Finally,
I
owe

Dave Hawkins
a
huge
thank
you
for
his
patience,
guidance
and
unwavering
support

throughout
the
past
few
years
and
with
this
thesis.


“The
desert
sharpened
the
sweet
ache
of
his
longing,
amplified
it,


gave
shape
to
it
in
sere
geology
and
clean
slant
of
light.”



Jon
Krakauer,
Into
the
Wild

ABSTRACT


Due
to
vast
petroleum
reserves,
the
Delaware
Basin
of
west
Texas
has
undergone

extensive
study,
but
the
provenance
of
the
Paleozoic
sediments
has
remained
poorly

constrained.

Approximately
50%
of
detrital
zircons
in
the
oldest
clastic
unit,
the

Brushy
Canyon
Formation,
are
ca.
0.5
Ga;
an
atypical
age
of
zircons
in
North
America.


This
study
uses
U-­‐Pb
geochronology,
trace
element
compositions
and
textural

characteristics
of
detrital
zircons
to
compare
ca.
0.5
Ga
detrital
zircons
in
the
Brushy

Canyon
Formation
to
coeval
zircons
from
a
potential
local
source,
the
Florida

Mountain
granite
of
New
Mexico.


The
Florida
Mountain
granite
is
correlated
with
a

suite
of
rift-­‐related
plutons
and
yields
an
age
of
517
±
11
Ma
(including
internal
and

systematic
error),
which
is
slightly
older
than
the
majority
of
ca.
0.5
Ga
BCFM

detrital
zircons.

Zircon
grains
from
the
Florida
Mountain
granite
also
overlap
in

composition,
for
most
trace
elements,
with
the
ca.
0.5
Ga
BCFM
detrital
zircons,

including
grains
with
textural
characteristics
consistent
with
igneous
origins.

These

results
suggest
that,
on
the
basis
of
age,
trace
element
composition
and
textural

characteristics,
ca.
0.5
Ga
BCFM
detrital
zircons
are
similar
to
zircons
in
the
Florida

Mountain
granite
and
hence,
the
rift
related
plutons
of
the
New
Mexico
Aulacogen

represent
a
likely
source.

The
unusual
occurrence
of
a
high
proportion
of
ca.
0.5
Ga

detrital
zircons
in
the
BCFM
appear
to
reflect
a
local
or
regional
source,
rather
than

a
distal
North
American
provenance.


1

INTRODUCTION


Provenance
studies
allow
geologists
to
link
mountainous
source
regions
with

sediment
deposited
in
basins
at
various
times
in
the
past
(Figure
1)
and
provide

important
evidence
for
paleogeographic
reconstructions
of
ancient
continents.


Modern
provenance
studies
go
beyond
the
traditional
methods
of
looking
at

mineralogy
and
paleocurrent
data
(e.g.,
Gardner
and
Borer,
2000)
by
evaluating
the

distribution
of
U-­‐Pb
ages
from
detrital
zircon
crystals
(e.g.,
Gehrels
et
al.,
2011).


Zircon
is
an
ideal
tracer
of
ancient
sediment
transport
because
it
is
common
in

igneous
and
metamorphic
source
rocks,
it
is
dense
and
highly
resistant
to

weathering
and
erosion,
and
it
is
an
ideal
U-­‐Pb
geochronometer
(Fedo
et
al.,
2003).


Source
Sink


Figure
1.

Mountain
(source)
to
ocean
basin
(sink)
cross-­‐section
showing
sediment

dispersal
system.
Modified
after
Grotzinger
and
Jordan
(2010).


Typically,
provenance
is
evaluated
by
comparing
the
age
distribution
of

measured
U-­‐Pb
ages
on
a
representative
population
of
detrital
zircon
crystals

separated
from
a
clastic
sedimentary
rock
with
age
spectra
from
potential
source

regions
(Fedo,
2003).

For
example,
Gehrels
et
al.
(2011)
used
the
distribution
of

ages
from
orogenic
belts
exposed
in
North
America
to
interpret
the
distribution
of

2

detrital
zircon
ages
from
sedimentary
rocks
exposed
in
the
Grand
Canyon
(Figure

2b).


However,
Thomas
(2011)
noted
that
the
peak
matching
methodology

employed
by
Gehrels
et
al.
(2011)
ignores
important
aspects
of
sediment
systems

such
as
recycling
of
sediments
and
clastic
inputs
from
local
sources.

Specifically,

Thomas
(2011)
found
that
much
of
the
detrital
zircon
age
distribution
in
the
Grand

Canyon
stratigraphy
could
be
accounted
for
by
local
sources
rather
than
the
distal

sources
proposed
by
Gehrels
et
al.
(2011).

Moreover,
because
orogenic
belts
span

thousands
of
kilometers
and
rocks
of
a
single
age
range
crop
out
over
large
areas
of

the
continent
(Figure
2a),
additional
constraints
are
needed
to
more
precisely
match

detrital
zircons
with
their
original
source
region
and
to
distinguish
local
sources

from
distal
sources
(Thomas,
2011).

Sandstones
of
the
late
Paleozoic
Delaware
Basin
provide
an
excellent

opportunity
to
distinguish
local
sediment
sources
from
distal
sediment
sources.
The

Brushy
Canyon
Formation
(BCFM)
is
an
early
to
middle
Permian
delta
deposit
in
the

Delaware
Basin
of
West
Texas
(Figure
3)
(Carr
and
Gardner,
2000).

Based
on

paleoflow
indicators
and
the
geometry
of
sand
channels,
Gardner
and
Borer
(2000)

concluded
that
the
source
of
sediment
for
the
BCFM
lay
to
the
north-­‐northwest
and

inferred
the
source
area
to
be
the
Ancestral
Rocky
Mountains.

However,
the
U-­‐Pb

age
distribution
of
detrital
zircons
from
the
lower
and
middle
BCFM
requires

additional
source
areas
(Cantine
et
al.,
2013).

More
than
50%
of
the
detrital
zircons

are
ca.
0.5
Ga,
and
therefore,
younger
than
rocks
thought
to
be
exposed
in
the

Ancestral
Rockies
during
the
Late
Paleozoic
(Cantine
et
al.,
2013;
Duncan
et
al.,

3

2013).

Cantine
et
al.
(2013)
found
that
granitic
and
sedimentary
rocks
such
as
those

exposed
today
in
the
Florida
Mountains
of
New
Mexico
(Amato
and
Mack,
2012)
are

very
similar
in
age
to
zircons
deposited
in
the
BCFM
during
the
Late
Paleozoic.

The

goal
of
this
study
is
to
test
whether
a
local
source
area
such
as
the
ancient
Florida

Mountains
can
account
for
ca.
0.5
Ga
sediment
in
the
BCFM
by
supplementing
U-­‐Pb

ages
of
detrital
zircon
with
additional
proxies
such
as
the
trace
element

compositions
and
textural
characteristics
of
those
crystals.


Figure
2.
(a)
Proterozoic
crustal
age
provinces
of
Laurentia
and
surrounding

continents
at
1.7
Ga.

Each
color
represents
rocks
of
different
ages.

Note
the
lateral

extent
of
each
age
province.

From
Karlstrom
et
al.
(2012)

(b)
Detrital
age
spectra

from
Grand
Canyon
(dark
grey)
compared
to
the
age
distribution
of
rocks
from

orogenic
belts
(light
grey)
that
represent
potential
source
regions
for
Grand
Canyon

sediment.

Note
that
although
there
are
similarities,
no
single
source
can
account
for

all
peaks
in
the
Grand
Canyon
spectrum.

From
Gehrels
et
al.
(2011).

4


Figure
3.
Map
of
Delaware
Basin
and
surrounding
Permian
aged
basins.

Grey

represents
deep-­‐water
deposits.

From
Olszewski and Erwin (2009).

5

REGIONAL
GEOLOGY


Equatorial
Pangea
and
the
Delaware
Basin


The
ancient
supercontinent
Pangea
was
an
amalgamation
of
modern
day

North
America,
South
America,
Antarctica,
India,
Eurasia
and
Australia
that
was
fully

assembled
during
the
early
Permian
and
persisted
until
the
start
of
the
Jurassic

(Figure
4;
Blakey,
2013).

Through
evidence
like
paleomagnetism,
shared
fossil

records
and
the
continuity
of
mountain
ranges,
geologists
have
a
global

understanding
of
the
distribution
of
continents
during
the
Permian
(e.g.,
Blakey,

2013).
However,
local
paleogeography
is
not
well
constrained
and
is
under
constant

revision
(e.g.,
Blakey,
2013).

Provenance
of
sediment
in
basins
can
be
used
to
help

constrain
local
uplifts
and
sediment
dispersal
pathways
and
hence
can
inform
more

accurate
paleogeographic
reconstructions
(Fedo,
2003).

In
the
case
of
the
Delaware

Basin,
the
sediments
deposited
during
the
Permian
are
preserved
in
the
Guadalupe

Mountains
of
West
Texas
offering
some
insight
into
the
regional
paleogeography
of

equatorial
Pangea.


NA

DB

PANTHALASSA

SA

AP-­‐OM

AF


Figure
4.
Global
paleogeographic
reconstruction
of
Pangea
at
280
Ma.

DB=

Delaware
Basin;
AP-­‐OM=
Appalachian
and
Ouachita-­‐Marathon
Mountains;
AF=

future
Africa,
Antarctica
and
India;
NA=
future
North
America;
SA=
future
South

America.

Note
that
the
Delaware
Basin
was
located
on
the
western
margin
of

equatorial
Pangea.

Map
from
Blakey
(2013).

6


DB


Figure
5.
Zoomed
in
paleogeographic
reconstruction
of
western
United
States
at

280
Ma.

Note
the
paleohighs
near
the
Delaware
Basin.

DB=
Delaware
Basin.

Modified
from
Blakey
(2013).


During
the
Permian,
the
Delaware
Basin
was
one
of
the
southernmost
basins

of
equatorial
Pangea
filled
with
an
epicontinental
sea
(Figure
5)
(Gardner
and
Borer,

2000;
co*cks
and
Torsvik,
2011).

The
Guadalupe
Mountains
and
surrounding
hills

expose
the
Permian
delta
deposit,
revealing
sequences
of
bedded
siltstone

punctuated
by
sandstone
lenses
representing
submarine
sand
channels
during
sea

level
lowstands
(Carr
and
Gardner,
2000).

Carbonates
that
were
deposited
along

the
basin
margin
during
the
early
Permian
impacted
the
depositional
patterns
of

younger
clastic
units
such
as
the
conformable
Brushy
Canyon
Formation;
an
early
to

middle
Permian
unit
hence
referred
to
as
the
BCFM
(Gardner
and
Borer,
2000;

Soreghan
and
Soreghan,
2013).
The
BCFM
along
with
the
overlying
units,
the
Cherry

7

Canyon
Formation
and
the
Bell
Canyon
Formation,
make
up
the
Delaware
Mountain

Group
(Figure
6).

Figure
6.
Schematic
lithostratigraphy
of
the
Delaware
Basin,
TX
from
NW
to
SE.

Yellow=
Sandstone,
Blue=
Limestones
and
Dolostones,
Red=
Dolostones.

Note
that

the
Brushy
Canyon
Formation
is
the
oldest
clastic
unit
in
the
Delaware
Mountain

Group.
From
Soreghan
and
Soreghan
(2013).


The
Delaware
Mountain
Group
is
a
laterally
extensive
(approximately
110

km
by
220
km)
clastic
body
containing
an
approximately
7,600
m
thick
package
of

Paleozoic
sediment
(Payne,
1976).

The
sediment
in
the
Delaware
Mountain
group
is

comprised
of
two
predominant
lithologies;
large
siliciclastic
sand
channel

complexes
that
were
deposited
during
sea
level
lowstands
and
laminated
siltstones

that
were
deposited
during
highstands
(e.g.
Carr
and
Gardner,
2000).

The
channel

complexes
are
characterized
by
well-­‐sorted,
well-­‐rounded,
clast
supported,
medium

grained
quartz
arenites
to
arkosic
sandstones.

Due
to
the
roundness
of
grains,
the

relatively
hom*ogeneous
grain
size
distribution
and
dunes
along
the
shelf
edge,
it
is

inferred
that
sediment
was
transported
to
the
shelf
edge
via
eolian
transport
and

8

was
brought
into
the
basin
during
high-­‐energy
flow
events
when
sea
level
dropped

(Soreghan
and
Soreghan,
2013;
Gardner
and
Borer,
2000).

This
interpretation
is

consistent
with
the
strong
trade
winds
and
monsoonal
transport
that
contributed
to

large
amounts
of
sediment
movement
during
the
Permian
in
southwestern
Pangea

as
shown
in
Figure
7
(Soreghan
and
Soreghan,
2013).


The
Paleozoic
sediment
in
the
Delaware
Basin
is
exposed
along
Tertiary
aged

normal
faults
associated
with
Basin
and
Range
extension
(Gardner
and
Borer,
2000).



A
combination
of
faulting
and
nonhorizontal
depositional
surfaces
has
led
to
a

moderate
(2
to
6
degree)
dip
to
the
East
(Payne,
1976).


Figure
7.
Inferred
fluvial
and
eolian
transport
during
the
middle
Permian.

DB=

Delaware
Basin,
MB=
Midland
Basin.

Note
that
the
monsoonal
transport
direction

near
the
Delaware
Basin
is
from
the
paleo-­‐Northwest
which
is
the
location
of
the

Florida
Mountains
and
other
rift
related
0.5
Ga
plutons.

From
Soreghan
and

Soreghan
(2013).

9

Previous
Provenance
Studies
of
the
BCFM


The
Delaware
Basin
is
one
of
three
Permian
depocenters
which
together

make
up
the
Permian
Basin.

Over
the
past
30
years,
the
area
has
undergone

extensive
study
due
to
petroleum
reserves
within
the
basin.

Despite
the
well-­‐
characterized
stratigraphy
and
extensive
field
study,
the
source
of
sediment
has

remained
poorly
constrained
(Soreghan
and
Soreghan,
2013).

Based
on
paleoflow

indicators
and
the
geometry
of
sand
channels,
Gardner
and
Borer
(2000)
concluded

that
the
source
of
sediment
for
the
BCFM
lay
to
the
north-­‐northwest
and
inferred

the
source
area
to
be
the
Ancestral
Rocky
Mountains
(Figure
8).

However,
Cantine

et
al.
(2013)
found
that
less
than
10%
of
the
detrital
zircons
in
the
BCFM
had
ages

and
trace
element
compositions
that
could
be
compatible
with
an
Ancestral
Rocky

Mountain
source.

Moreover,
Cantine
et
al.
(2013)
found
a
distinctive
peak
at
ca.
0.5

Ga
comprising
approximately
50%
of
the
zircons
in
the
lower
to
middle
BCFM.



500
Ma
rocks
are
uncommon
in
North
America
and
thus
there
are
limited

sources
that
could
have
provided
the
ca.
0.5
Ga
detrital
zircons
found
in
the
BCFM.


Figures
9a
to
9e
show
ca.
0.5
Ga
zircons
in
the
BCFM
compared
to
published
zircon

probability
distributions
from
potential
sources
with
ca.
0.5
Ga
zircons
(Figure
8

shows
a
map
of
potential
sources).

Based
on
ages
alone,
the
Ouachita
Mountains

and
the
Appalachian
Mountains
(Figure
9a),
and
the
Acatlan
magmatic
and

metasedimentary
rocks
of
present
day
Mexico
(Figure
9b
and
9c)
can
be
excluded
as

sources
for
the
ca.
0.5
Ga
zircons
in
the
BCFM.


Figure
9d
and
9e
show
the
Bliss
Sandstone,
a
unit
derived
from
the
FM

granite
(Amato
and
Mack,
2012),
and
the
FM
granite
respectively
compared
to
ca.

10

0.5
Ga
zircons
from
the
BCFM.

Based
on
ages
published
by
Amato
and
Mack
(2012),

the
Florida
Mountains
have
the
same
age
(within
error)
as
the
BCFM
ca.
0.5
Ga

zircons
and
hence
the
Florida
Mountain
granite,
or
another,
similarly
aged
pluton,

are
a
likely
source
of
ca.
0.5
Ga
zircons
in
the
BCFM.



Soreghan
and
Soreghan
(2013)
obtained
detrital
zircon
age
spectra
to

identify
the
sources
of
Paleozoic
sediment
in
the
Delaware
Basin,
including
the

BCFM.

Soreghan
and
Soreghan
(2013)
suggested
the
Ouachita-­‐Marathon
belt
in

present
day
Mexico
as
a
potential
source
based
on
the
direction
of
inferred
trade

winds
and
roughly
similar
ages.

However,
as
Cantine
et
al.
(2013)
showed,
ages

alone
preclude
the
Ouachita
Mountains
from
being
the
source
of
ca.
0.5
Ga
zircons
in

the
BCFM.


Figure
8.
Sources
considered
by
Cantine
et
al
(2013)
at
280
Ma.

The
Delaware

Basin
is
circled
in
red
and
potential
sources
are
circled
in
black.

Note
the
distances

(and
regional
extent)
between
potential
sources
and
the
Delaware
Basin.

The

Mexican
Blocks
includes
the
Acatlan
province.

Map
modified
from
Blakey
(2013).

11

A

B

12

C

D

13

E

F

Figure
9.
Probability
distribution
plot
of
BCFM
ca.
0.5
Ga
zircons
compared
to
ca.

0.5
Ga
rocks
from:
(A)
the
Ouachita-­‐Southern
Appalachian
Mountains
(B)
Acatlan

metasedimentary
rocks
(C)
Acatlan
igneous
rocks
(D)
the
Bliss
Sandstone
derived

from
the
Florida
Mountain
granite
(E)
the
Florida
Mountain
granite
and
(F)

Paleozoic
sediment
in
the
Grand
Canyon.

Published
data
is
shown
with
systematic

errors
to
allow
comparison
to
Cantine
et
al.
(2013)
although
the
data
was
originally

published
with
only
internal
errors.

14

The
Florida
Mountain
Granite
and
Rift
Related
Plutons


The
Florida
Mountains
(FM)
are
a
roughly
10
km
long,
north-­‐south-­‐trending

mountain
range
in
present
day
south-­‐central
New
Mexico

(Brown
and
Clemons,

1983).

The
range
is
divided
by
a
WNW-­‐striking
high
angle
reverse
fault
into
a

northern
portion
dominated
by
Precambrian
igneous
rocks
and
a
southern
portion

dominated
by
Paleozoic
sediments
(Brookins,
1974).

The
FM
primarily
consist
of
a

large
granitic
pluton
emplaced
around
510
±
5
Ma
(Amato
and
Mack,
2012).

The

overlying
Bliss
Sandstone
contains
granite
clasts
identical
to
the
FM
granite

indicating
a
nonconformable
contact
relationship,
a
conclusion
supported
by
U-­‐Pb

ages
from
detrital
zircons
(e.g.,
Figure
9d,
9e;
Amato
and
Mack,
2012).



The
FM
granite
is
one
of
a
series
of
Cambro-­‐Ordovician
granite
to
syenite

plutons
that
occur
in
a
broad
band
from
southern
New
Mexico
to
central
Colorado

(Figure
10;
McMillan
and
McLemore,
2004).
Due
to
similarities
in
ages
and

distinctive
geochemical
compositions
that
suggest
a
perturbed
mantle
consistent

with
rifting,
this
series
of
rift
related
plutons
has
been
correlated
with
the
Oklahoma

Aulacogen
(McMillan
and
McLemore,
2004).


McMillan
and
McLemore
(2004)

attempted
identify
plutons
related
to
the
New
Mexico
Aulacogen,
however,
their

attempts
were
limited
by
the
paucity
of
published
ages
in
the
region.

15

FM


Figure
10.
Map
showing
the
interpreted
link
between
New
Mexico-­‐Colorado
ca.
0.5

Ga
plutons
and
Oklahoma
Aulacogen.

FM=
Florida
Mountains;
Black
stars
represent

known
Cambro-­‐Ordovician
igneous
rocks;
White
stars
represent
suspected
Cambro-­‐
Ordovician
rocks.
Note
the
NE-­‐SW
trend
of
the
rift
related
plutons.

McMillan
and

McLemore
(2004).

16

APPROACH


This
study
evaluates
whether
ca.
0.5
Ga
detrital
zircons
in
the
Permian
BCFM

were
derived
from
the
Florida
Mountain
granite.

To
accomplish
this
goal,
I
(1)
used

CL
images
on
all
zircon
grains
to
compare
textural
characteristics
from

compositional
zoning;
(2)
obtained
U-­‐Pb
ages
and
trace
element
compositional
data

for
zircons
from
the
FM
granite
using
the
LA-­‐ICPMS
at
Boise
State
and
(3)
conducted

additional
analyses
on
detrital
zircon
samples
(by
LA-­‐ICPMS)
from
the
middle
to

upper
BCFM
to
further
evaluate
the
detrital
zircon
population
of
the
BCFM
over
time.


These
data
provide
three
independent
criteria

(1)
textural
characteristics,
(2)
U-­‐
Pb
age
and
(3)
trace
element
compositions–
for
comparing
zircon
crystals
in
the

Florida
Mountain
granite
to
ca.
0.5
Ga
detrital
zircons
in
the
BCFM.

17

BACKGROUND


U-­‐Pb
Geochronology
and
Trace
Element
Compositions
of
Zircon


U-­‐Pb
geochronology
is
a
robust
dating
technique
and
the
mineral
zircon

(ZrSiO4)
is
an
ideal
U-­‐Pb
chronometer.

The
U-­‐Pb
isotopic
system
is

geochronologically
powerful
because
two
isotopes
of
U
decay
to
two
different

isotopes
of
Pb
(238U206Pb
and
235U207Pb),
providing
two
independent

radioactive
clocks
(Gehrels,
2012).

The
two
isotopes
of
U
have
different
half-­‐lives

(235U207Pb
has
a
half-­‐life
of
704
million
years;
238U206Pb
has
a
half-­‐life
of
4.47

billion
years)
making
the
U-­‐Pb
system
useful
over
most
of
Earth’s
history
(Harley

and
Kelly,
2007).



The
mineral
zircon
is
an
ideal
U-­‐Pb
geochronometer
because
when
a
crystals

grows,
U
is
incorporated
into
the
zircon
structure,
but
Pb
is
excluded.


The

substitution
of
uranium
into
the
structure
makes
the
initial
U-­‐Pb
ratio
extremely

high,
and
measured
ratio
of
U-­‐Pb
isotopes
is
directly
related
to
time

(Harley
and

Kelly,
2007).

In
addition,
zircon
is
an
abundant
accessory
mineral
in
both
igneous

and
metamorphic
rocks
and
resistant
to
physical
and
chemical
weathering,
making

it
an
ideal
tracer
of
sediment
transport
(Fedo
et
al.,
2003).

The
trace
element
composition
of
a
zircon
crystal
is
related
to
its
atomic

structure,
the
bulk
composition
of
the
magma
or
fluid
from
which
the
crystal
grew

and
the
crustal
conditions
(T,
P)
during
growth.

Zircon
is
a
tetragonal
orthosilicate,

characterized
by
the
structural
formula:

VIIIZrIVSiO4.

18

When
zircon
crystallizes
from
a
melt,
the
crystal
incorporates
cations
other
than

zirconium
and
silicon.
The
substitutions
that
occur
are
dictated
primarily
by

Goldschmidt’s
Rules
(size,
charge,
electronegativity
of
competing
cations)
and
the

pressure-­‐temperature
conditions
during
growth.

Thus,
the
relative
abundances
of

specific
trace
elements
can
be
used
as
proxies
for
the
source
rocks
from
which

detrital
zircons
originated.


As
mentioned
previously,
large
cations
with
a
4+
charge,
such
as

U4+,
Th4+,

and
particularly
Hf4+
readily
substitute
into
the
VIII-­‐fold
site
and
are
thus
relatively

abundant
in
typical
zircons.

Ti4+
typically
occurs
in
lower
concentrations
because
of

its
smaller
ionic
radius,
but
the
concentration
of
Ti4+
is
T-­‐dependent
and
serves
as
a

geothermometer.

Most
rare
earth
elements
(REE)
occur
in
the
crust
as
3+
cations

and
their
radius
varies
systematically
with
atomic
number
(Harley
and
Kelly,
2007).


The
heavy
REE
readily
substitute
for
VIIIZr4+,
but
the
light
REE
tend
to
be

incompatible.
To
compensate
for
the
charge
imbalance
created
when
a
REE

substitutes
for
VIIIZr4+,
a
coupled
substitution
occurs
with
the
following
scheme:

VIIIZr4+
IVSi4+



VIII(Y3+,
REE3+)
IVP5+.

The
coupled
substitution
involving
Y
and
P
is
common
and
forms
an
incomplete

binary
solid
solution
between
zircon
and
xenotime
(YPO4),
which
are
isostructural

despite
their
contrasting
chemical
composition.

Cations
with
a
5+
charge,
like
Nb5+

and
Ta5+,
also
substitute
for
Zr4+
in
the
VIII-­‐fold
site,
but
these
substitutions
must
be

coupled
to
substitution
of
a
3+
cation
(e.g.,
Fe
3+)
into
the
tetrahedral
site.


When
cations
substitute
into
zircon,
zones,
which
represent
potions
of
the

zircon
that
are
enriched
or
depleted
in
certain
cations,
are
often
created
within
the

19

crystal.

The
type
of
zoning
that
occurs
within
a
crystal
can
be
helpful
in
interpreting

a
zircons
crystallization
history
(Harley
and
Kelly,
2007).

For
example,
fine

oscillatory
zoning
is
typically
diagnostic
of
igneous
source.
These
zones
can
be

imaged
using
cathodoluminescence
(CL)
and
backscattered
electron
(BSE)

microscopies.

Zones
that
appear
bright
on
CL
images
tend
to
be
enriched
in
heavy

rare
earth
element
(HREE)
concentrations
and
relatively
low
U
and
Th

concentrations
because
HREE
emit
energy
while
U
and
Th
absorb
energy
(Hanchar

and
Westrenen,
2007).



Mineral
inclusions
can
impact
the
age
or
trace
element
composition
obtained

during
an
analysis
and
hence,
avoiding
inclusions
is
an
important
consideration

when
choosing
grains
and
locations
on
the
grain
to
analyze.

Minerals
that
typically

occur
in
zircon
crystals
include
apatite
[Ca5(PO4)3(F,Cl,OH)],
monazite
[(Ce,La)PO4],

rutile
(TiO2),
xenotime
(YPO4),
and
Fe
oxides.

If
the
laser
ablates
an
inclusion
during

analysis
of
a
zircon
crystal,
the
elements
associated
with
that
mineral
are
enriched

beyond
typical
values
for
zircon.

So
while
it
is
important
to
try
to
avoid
inclusions

prior
to
analysis,
analyses
contaminated
by
mineral
inclusions
are
simple
to
identify

and
reject
after
analysis.

20

METHODS


Rock
Sampling
in
the
Field


Samples
from
the
BCFM
were
collected
by
Cantine
et
al.
(2013)
from
the

locations
shown
in
Appendix
A.


Stratigraphically,
the
samples
span
the
oldest

portion
of
the
BCFM
to
the
top
of
the
Middle
BCFM
(Figure
11).

All
samples
were

taken
from
large
sand
channels
as
seen
in
Appendix
A.

The
sand
channels
sampled

are
composed
of
well
sorted,
clast
supported,
medium
to
coarse
grained
quartz

arenites.

The
sand
channels
represent
high-­‐energy
flow
events
during
sea
level
low

stands
and
hence
include
rip-­‐up
clasts
from
older
siltstone
units.
High
energy
flow

events
likely
produced
well-­‐mixed,
hom*ogenous
sediment
populations.

Our

sampling
strategy,
collecting
and
analyzing
two
samples
per
channel
(e.g.,
BCMC12-­‐
3A
and
3B)
was
designed
to
evaluate
the
hom*ogeneity
of
the
detrital
zircon

populations
and
whether
our
laboratory
procedures
resulted
in
sampling
bias.


Samples
BCMC12-­‐1A,
1B,
and
4A
were
analyzed
by
Cantine
et
al.
(2013).

Samples
BCMC12-­‐3A
and
3B
were
analyzed
for
this
study
to
provide
greater

stratigraphic
coverage
of
the
BCFM
and
to
better
evaluate
the
temporal
persistence

of
the
ca.
0.5
Ga
source.

Zircon
separates
from
one
sample
of
the
Florida
Mountain
granite
(sample

08FM-­‐10
in
Amato
and
Mack,
2012)
in
southeastern
New
Mexico
were
generously

provided
by
Jeff
Amato
at
New
Mexico
State
University.

21

Stratigraphic
Height

UPPER

3A
&
3B
(this
study)
MIDDLE

LOWER

1A
&
1B
(Cantine
et
al.,
2013)
4A
(Cantine
et
al.,
2013)

Figure
11.

Schematic
stratigraphic
column
showing
Lower,
Middle
and
Upper

BCFM
with
relative
locations
of
Cantine
et
al.
(2013)
samples.


Table
1.
Sampling
locations
for
this
study
and
Cantine
et
al.
(2013).

Sample

Latitude


Longitude


BCMC12-1A

31°50'53.52"

104°50'24.70"

BCMC12-1B

31°50'52.10"

104°50'23.84"

BCMC12-3A

31°51'45.72"

104°50'20.70"

BCMC12-3B

31°51'46.14"

104°50'18.42"

BCMC12-4A

31°50'32.51"

104°50'33.50"

22

Sample
Preparation


All
sample
processing
and
analytical
methods
were
conducted
at
Boise
State

University
in
the
laboratory
of
Dr.
Mark
Schmitz
and
in
collaboration
with
Dr.
Jim

Crowley.

Zircon
separates
were
obtained
from
samples
of
the
BCFM
by
standard

crushing
(jaw
crusher
and
disc
mill),
water
table,
heavy
liquid
(bromoform,
ρ=
2.89

g/cm3)
and
magnetic
(Frantz)
separation
techniques.
The
least
magnetic
zircon

separate
was
annealed
at
900°C
and
1
atm
for
60
hours.
Annealing
the
grains
serves

two
purposes;
it
repairs
radiation
damage
to
the
crystal
lattice
and
increases
the

amount
of
luminescence
which
helps
when
the
zircons
are
imaged
using

cathodoluminescence
(Mattinson,
2005).




Approximately
140
zircon
crystals
per
sample
were
hand
selected,
to
ensure

representation
of
all
grain
types
by
the
largest,
most
inclusion-­‐
and
crack-­‐free

crystals.

Selected
grains
were
separated
into
two
size
groups
prior
to
mounting
in

epoxy.

By
mounting
grains
of
similar
size
in
the
same
mount,
we
ensured
that
when

the
mount
was
ground
down
and
polished,
similar
depths
were
reached
within
each

crystal.

Therefore,
textural
characteristics
reflecting
more
of
the
grain’s
growth

history
were
exposed
for
imaging.


Polished
mounts
were
imaged
on
a
JEOL
scanning
electron
microscope
using

both
back-­‐scattered
electron
(BSE)
and
cathodoluminescence
(CL)
detectors.

The

utility
of
imaging
zircon
crystals
prior
to
LA-­‐ICPMS
is
twofold.

First,
BSE
and
CL

images
can
be
used
to
document
multiple
growth
domains,
cracks
and
inclusions

which
helps
geologists
avoid
sampling
spots
that
will
lead
to
an
erroneous
ages
or

unreliable
chemical
compositions
(Harley
and
Kelly,
2007).

Secondly,
BSE
and
CL

23

images
provide
textural
information
about
crystals
which
allows
first
order

conclusions
to
be
drawn
on
whether
the
detrital
zircons
were
derived
from
an

igneous
source
rock
or
a
metamorphic
source
rock
(Gehrels,
2012).

Every
zircon

crystal
was
imaged
prior
to
analysis
to
locate
areas
of
each
grain
that
were
devoid
of

inclusions,
cracks
or
multiple
growth
domains.

In
addition,
the
polished
grain

mounts
were
placed
under
a
petrographic
microscope
and
each
grain
was
observed

in
both
reflected
and
transmitted
light
to
locate
areas
and
volumes
that
were

inclusion-­‐
and
crack-­‐free.

This
step
was
not
performed
for
the
samples
analyzed
by

Cantine
et
al.
(2013)
and
resulted
in
a
higher
yield
of
usable
analyses
for
this
study.


After
analysis,
the
grains
were
re-­‐imaged
to
record
exactly
where
each
grain
was

analyzed.


LA-­‐ICPMS


Zircons
were
analyzed
by
laser
ablation
inductively
coupled
plasma
mass

spectrometry
(LA-­‐ICPMS)
using
a
Nb:YAG
laser
(1024
cm-­‐1)
and
a
quadropole
mass

analyzer
to
obtain
U-­‐Pb
ages,
rare
earth
element
(REE)
concentrations
and

concentrations
of
other
elements
dominant
in
zircon’s
structure.

Zircons
were

ablated
with
a
spot
size
of
30
μm
(fluence=
5
J/cm2
and
pulse
rate=
10
Hz).

Ablated

material
was
carried
to
the
argon
torch
by
a
helium
gas
stream.

Prior
to
each

analysis,
background
counts
were
taken
and
were
subtracted
from
the
total
counts

during
analysis.
Additional
analytical
details,
particularly
for
trace
element
analyses,

are
presented
in
Appendix
B.



Each
analysis
was
evaluated
for
quality.

Plots
of
analytical
sweeps
were

inspected
for
the
presence
of
inclusions
(count
rate
spikes
in
P,
Ti,
Nb,
Y,
Ce,
etc.)

24

and
reverse
fractionation.

The
data
were
then
evaluated
for
unusual
REE
patterns,

anomalous
concentrations
of
individual
trace
elements
and
U-­‐Pb
discordance.

25

RESULTS


Brushy
Canyon
Formation

CL
images
for
zircon
grains
from
the
BCFM
show
a
wide
variety
of
textures

including
fine
oscillatory
and
sector
zoning,
patchy
resorption
features,
multiple

growth
domains,
inherited
cores,
metamorphic
overgrowths
and
recrystallization

(Figure
12).

These
textures
provide
clues
into
the
igneous
or
metamorphic
origin
of

detrital
zircon
grains
and
thus
provide
a
basis
of
comparison
to
zircons
from
the
FM

granite.

As
expected,
the
BCFM
contains
grains
exhibiting
a
variety
of
textural

characteristics
and
zoning
types
in
BSE
and
CL
images.

30
microns

Figure
12.
CL
images
of
8
BCFM
detrital
zircons
from
sample
BCMC12-­‐3A.

Note
the

wide
variations
in
textures
and
the
presence
of
cracks
in
the
grains
in
the
top
right

and
bottom
left
corners.

The
circular
features
visible
on
five
grains
are
the
pits

created
by
LA-­‐ICPMS
analysis.

These
pits
show
the
portion
of
the
grain
analyzed.

26

U-­‐Pb
ages
were
measured
on
295
BCFM
from
samples
BCMC12-­‐3A
and

BCMC12-­‐3B,
47
of
which
were
rejected
during
quality
control.
Both
visual

examination
and
Kolmogorov-­‐Smirnov
(K-­‐S)
analysis
indicate
that
both
samples

yield
statistically
indistinguishable
age
spectra.
The
K-­‐S
test
is
a
statistical
measure

of
the
similarity
of
spectral
datasets,
such
as
DZ
age
probability
spectra.
The
K-­‐S
test

produces
P-­‐values
that
provide
a
basis
of
comparison,
such
that
P-­‐values
<
0.05

indicate
two
spectra
statistically
different
at
the
95%
confidence
interval
(Guynn

and
Gehrels,
2006).

The
age
distribution
spectra
for
samples
BCMC12-­‐3A
and
3B

yield
a
P
value=0.571.

This
value
is
well
above
the
threshold
value
of
0.05,

suggesting
hom*ogeneity
of
the
zircon
population
within
the
sand
channel
sampled,

affirming
the
laboratory
methods
employed
to
reduce
sampling
bias,
and
permitting

treatment
of
these
results
as
a
single
population
of
zircons
(n=248).
The
combined

age
spectrum
for
samples
BCMC12-­‐3A
and
3B
are
statistically
indistinguishable

from
the
age
distribution
of
detrital
zircons
from
samples
lower
in
the
stratigraphic

sequence
(samples
BCMC12-­‐1A,
1B
and
4A;
Hawkins
unpublished),
yielding
a
K-­‐S

test
P-­‐value
of
0.654.

These
statistical
results
permit
treating
the
results
from
all

five
samples
from
the
BCFM
as
a
single,
hom*ogeneous
population
(n=551)
of

detrital
zircon
ages
(figure
13).




The
age
spectrum
for
the
BCFM
is
characterized
by
prominent
peaks
at
ca.

0.5
Ga,
1.1
Ga,
1.4
Ga,
1.7
Ga,
1.9
Ga
and
2.7
Ga.

Peaks
at
ages
greater
that
0.8
Ga
are

typical
of
North
American
continental
crust
(Gehrels
et
al.
2011;
Soreghan
and

Soreghan,
2013).

However,
the
dominant
peak
at
ca.
0.5
Ga,
representing
about

48%
of
all
grains,
is
unusual
for
North
America
and
likely
represents
a
local
or

27

regional
source
rather
than
sediment
transported
from
distal
North
American

sources.


Figure
13.
Normalized
probability
age
distributions
for
samples
from
the
BCFM.


Note
the
close
similarity
of
the
age
and
magnitude
of
peaks
in
each
sample
and
the

similarity
of
the
combined
spectrum
to
the
spectra
of
samples
from
different

stratigraphic
levels
in
the
BCFM.

28

Since
the
goal
of
this
study
is
to
evaluate
the
FM
granite
as
a
source
for
BCFM

sediment,
in
this
section
I
describe
the
zoning
patterns
and
compositional

characteristics
of
ca.
0.5
Ga
zircon
grains
from
all
five
BCFM
samples
analyzed
by
the

Hawkins
research
group
over
the
past
18
months.

Figure
14
shows
a
sampling
of
ca.

0.5
Ga
BCFM
detrital
zircons
with
a
variety
of
zoning
patterns
including
fine

oscillatory,
coarse
oscillatory,
resorption
features,
potential
sector
zoning
and

potential
patchy
zoning.

Of
the
n=246
ca.
0.5
Ga
BCFM
zircons,
at
least
20%
are

consistent
with
an
igneous
origin
based
on
the
oscillatory
zoning
patterns.

An

additional
40
to
60%
of
grains
show
potential
sector
zoning
and
may
also
be

igneous
in
origin.



Figure
14.
Nine
BCFM
ca.
0.5
Ga
zircons
displaying
the
variations
in
zoning
patterns.


Note
the
significant
variations
in
luminescence.


The
4+
cations
that
freely
substitute
into
the
zircon
structure
show
order-­‐of-­‐
magnitude
variations
in
concentrations.

Specifically,
the
U
concentrations
range

29

from
27
to
700
ppm
with
most
values
falling
between
100-­‐350
ppm,
Th

concentrations
range
from
9
to
308
ppm
with
most
values
falling
between
40-­‐110

ppm
and
Ti
concentrations
range
from
2
to
25
ppm
with
most
values
falling

between
5-­‐15
ppm.
Th/U
ratios
vary
from
0.17
to
1.08.

The
5+
cations
Nb
and
Ta,

which
require
coupled
substitution,
also
show
order
of
magnitude
variations,
but

the
Nb/Ta
ratio
for
the
BCFM
zircons
shows
limited
variation.
Phosphorus,
which
is

coupled
to
variations
in
large
3+
cation
concentrations
(e.g,
HREE
and
Y),
ranges

from
65
to
357
ppm
with
most
falling
between
130-­‐200
ppm.
Yttrium

concentrations
range
from
275
to
4767
ppm
with
most
zircons
falling
between
700-­‐
1900
ppm.


Figure
15
shows
the
chondrite-­‐normalized
REE
patterns
for
ca.
0.5
Ga
BCFM

zircons.

The
steep
REE
patterns,
enriched
in
HREE,
exhibit
(Lu/Nd)cn
ratios

ranging
from
52
to
3739,
with
most
values
falling
between
100-­‐400.
Concentrations

of
Lu
range
from
14
to
179
ppm
with
most
grains
falling
between
30-­‐80
ppm.

The

chondrite
normalized
europium
anomaly
ranges
from
0.01
to
0.50
with
most
falling

between
0.05
and
0.15.


The
trace
element
composition
of
the
BCFM
detrital
zircons
is
limited

compared
to
the
compositional
variation
of
zircon
from
continental
crust,
a
topic

which
is
expanded
upon
in
Discussion.

30

Figure
15.
REE
plot
of
all
ca.
0.5
Ga
BCFM
grains.

Note
the
order
of
magnitude

ranges
in
concentrations
as
well
as
significant
variations
in
slopes
and
in
shape
of

anomalies.

31

Florida
Mountain
Granite

The
FM
granite
zircon
grains
are
euhedral
and
exhibit
distinctive
sector

zoning
in
both
BSE
and
CL
images
(Figure
16).
Typical
sector
zoned
grains
are

characterized
by
bright
hour-­‐glass-­‐shaped
domains
in
sharp
contact
with
darker

domains.

Most
grains
contain
abundant
inclusions,
especially
devitrified,
irregularly

–shaped
melt
inclusions,
acicular
needles
of
apatite,
and
equant
monazite
grains.

30
microns


Figure
16.
Post
laser
ablation
CL
image
of
FM
granite
zircons.

Note
the
distinctive

sector
zoning
and
clear
presence
of
inclusions.



U-­‐Pb
ages
were
obtained
on
77
laser
spots
on
FM
granite
zircons,
of
which,

32
were
rejected
during
quality
control.

The
35
analyses
that
passed
quality
control

yield
an
age
of
517
±
3/11
Ma
(random
errors/systematic
errors)(figure
17).

This

32

age
is
indistinguishable
from
the
ages
determined
Amato
and
Mack
(2012)
on
two

samples
analyzed
by
SHRIMP
and/or
LA-­‐ICPMS
in
(Figure
18).

The
trace
element
composition
of
FM
granite
zircon
is
more
restricted
than

that
of
the
BCFM
detrital
zircons,
as
expected
for
a
sample
of
igneous
rock.


Cations

with
a
4+
charge
show
much
more
consistency
than
in
the
BCFM
ca.
0.5
Ga
zircons

with
the
U
concentration
ranging
from
59
to
192
ppm,
the
Th
concentration
ranging

from
36
to
172
ppm
and
the
Ti
concentration
ranging
from
6
to
10
ppm.

Th/U

ratios
vary
from
0.6
to
0.94.

The
5+
cations
also
show
tight
clusters
with
the
Nb

concentration
ranging
from
6
to
20
ppm
and
the
tantalum
concentration
ranging

from
3
to
8
ppm.
Phosphorus
ranges
from
137
to
236
ppm.


Figure
19
shows
chondrite-­‐normalized
REE
patterns
for
all
FM
granite

zircons.

Although
the
(Lu/Nd)cn
ratio
varies
from
125
to
656
ppm
,
the
Yb/Gd
ratio

shows
limited
variation
ranges
from
9.7
to
16.0.

Lu
concentrations
range
from
36
to

116
ppm.

There
is
a
suggestion,
particularly
in
the
LREE
portion
of
the
patterns,

that
there
may
be
two
compositionally
distinct
groups
of
zircons,
although
this
may

be
an
artifact
of
the
small
number
of
analyses.

33


Figure
17.
Age
distribution
of
Florida
Mountain
granite
(this
study).

Note
the
mean

age
of
517
±
11
Ma
including
both
internal
and
external
error
and
the
MSWD.

Figure
18.
Florida
Mountain
granite
ages
from
this
study
compared
to
FM
granite

ages
from
Amato
and
Mack
(2012).

Note
the
agreement
in
ages
between
all
samples.

34


Figure
19.
REE
plot
of
Florida
Mountain
granite.

Note
that
the
concentrations
do

not
vary
much,
particularly
when
compared
to
the
variations
in
the
BCFM
REE
plot.

35

DISCUSSION

The
BCFM
age
spectrum
is
characterized
by
prominent
peaks
at
ca.
0.5
Ga,

1.1
Ga,
1.4
Ga,
1.7
Ga,
1.9
Ga
and
2.7
Ga.
Peaks
older
than
0.8
Ga
are
typical
of
North

American
zircon
populations
derived
from
the
Grenville
orogen
(1.1
Ga),
the

Yavapai
orogen
(1.7
Ga),
the
Laurentian
province
(>2.7
Ga)
and
from
anorogenic

granites
(1.4
Ga)
intruded
throughout
North
America
(Figure
2).

However,
the
age

of
the
dominant
peak
at
ca.
0.5
Ga,
comprising
48%
of
the
BCFM
zircons,
is
not

typical
of
North
American
crust.

In
addition,
the
magnitude
and
the
limited
age

range
of
ages
beneath
the
0.5
Ga
peak
suggest
that
these
grains
were
derived
from
a

proximal
source.

A
more
distal
source
would
have
a
broader,
lower
magnitude
peak

because
long
transport
distances
lead
to
mixing
(averaging)
of
sediments
derived

from
large
regions
and
varied
source
rocks.

As
shown
in
Figure
9f,
granite
plutons

in
the
New
Mexico
Aulacogen
(described
by
McMillan
and
McLemore,
2004),
such
as

the
FM
granite,
are
similar
in
age
to
detrital
zircons
from
the
BCFM.


The
FM
granite
and
the
McClure
Mountain
syenite
are
two
plutons
from
the

New
Mexico
Aulacogen
for
which
U-­‐Pb
ages
are
available,
and
will
therefore
be
used

to
represent
this
suite
of
plutons.

The
FM
granite
yields
an
age
of
517
±
11
Ma

including
both
internal
and
external
error
(this
study)
which
is
nominally
older
than

the
ca.
0.5
Ga
peak
in
the
BCFM
age
spectrum,
although
they
overlap
within
error

(Figure
20).

The
McClure
Mountain
Syenite
yields
an
ID-­‐TIMS
age
of
524.0
±
0.1
Ma

(Schoene
and
Bowring,
2006)
which
is
statistically
indistinguishable
from
the
FM

granite
(this
study),
but
older
than
the
FM
granite
ages
determined
by
Amato
and

Mack
(2012).

Moreover,
the
highly
precise
age
of
the
McClure
Mountain
syenite

36

falls
on
the
older
shoulder
of
the
age
distribution
for
BCFM
detrital
zircon
(Figure

20).

These
results
demonstrate
that
the
age
of
the
FM
granite
and
McClure

Mountain
syenite,
as
exposed
today,
are
within
analytical
uncertainty
of
the

apparent
ages
of
ca.
0.5
Ga
detrital
zircon
from
the
BCFM.

However,
despite
the

similarity
of
ages,
the
FM
granite
and
the
McClure
Mountain
syenite
do
not
account

for
the
entire
distribution
of
ages
observed
in
BCFM
detrital
zircons,
particularly

those
defining
the
younger
portion
of
the
age
distribution
peak.

The
overlap
in
ages
between
two
plutons
from
the
New
Mexico
Aulacogen

and
the
ca.
0.5
Ga
zircons
in
the
BCFM
suggests
a
genetic
link,
but
also
highlights
the

need
to
consider
additional
criteria
when
identifying
the
provenance
of
sediments.


Trace
element
compositional
data
provide
an
additional
point
of
comparison.

Given

the
relationship
between
the
zircon
crystal
structure
and
the
substitution
schemes

of
cations,
cation
ratios
provide
a
useful
basis
for
comparing
different
zircon

populations.
Since
it
is
difficult
to
fractionate
cations
with
the
same
charge
and

similar
size,
ratios
between
them
(e.g.,
Th/U
and
Nb/Ta)
provide
potential

fingerprints
for
source
rocks
of
zircons,
and
a
basis
for
comparing
zircon

populations.



The
trace
element
composition
of
zircons
from
the
FM
granite
overlap
with

the
composition
of
ca.
0.5
Ga
detrital
zircons
from
the
BCFM
(Figure
21).

For
all

elements
and
elemental
ratios
considered,
spanning
all
cation
charges
(3+,
4+,
5+)

and
a
wide
range
of
ionic
radii,
the
composition
of
FM
granite
zircons
is

indistinguishable
from
the
composition
of
ca.
0.5
Ga
detrital
zircons
from
the
BCFM.


Moreover,
these
plots
demonstrate
that
both
the
ca.
0.5
Ga
BCFM
detrital
zircons

37

and
the
FM
granite
zircons
are
compositionally
similar
to
>0.8
Ga
zircons
derived

from
North
American
crust.


Figure
20.
Comparison
between
ca.
0.5
Ga
zircons
from
BCFM,
McClure
Mt.
Syenite

and
the
FM
granite.
Note
that
U-­‐Pb
ages
determined
by
LA-­‐ICPMS
for
the
FM
granite

from
Amato
and
Mack
(2011)
and
from
this
study
include
both
random
and

systematic
errors.

The
McClure
Mt.
Syenite
U-­‐Pb
age,
determined
by
ID-­‐TIMS,

overlaps
with
the
BCFM
U-­‐Pb
age
but
is
offset
from
the
peak
of
the
BCFM
detrital

zircon
ages.

38

A

B

39

C

D

40

E


Figure
21
a-­‐e.
Y
is
held
constant
as
the
x-­‐axis
as
it
behaves
similarly
to
the
HREE.


Note
the
consistent
overlap
between
BCFM
ca.
0.5
Ga
grains
and
the
FM
granite
in

all
plots.

Also
note
that
most
points
fall
within
the
North
American
zircon
bubble.


All
data
points
encompass
analytical
uncertainty.

North
American
zircon
data

comes
from
Crowley
(unpublished)
and
Hawkins
(unpublished)
which
were
all

analyzed
at
Boise
State
University
by
LA-­‐ICPMS.
Additional
references
in
(a)
are

modified
after
Grimes
et
al.
(2007).


The
substantial
overlap
in
compositions
suggests
compositional
similarities

between
ca.
0.5
Ga
BCFM
detrital
zircons
and
FM
granite
zircons
which
can
be

further
evaluated
by
examining
the
textural
characteristics
revealed
in
BSE
and
CL

images.

The
Nb/Ta
and
the
Th/U
were
used
as
proxies
to
cull
ca.
0.5
Ga
BCFM

zircons
that
have
similar
trace
element
compositions
to
the
FM
granite
for
further

evaluation
using
CL
images.

Approximately
20%
of
ca.
0.5
Ga
BCFM
zircons
overlap

with
the
FM
granite
for
both
the
Th/U
and
Na/Ta
ratios.

Of
the
grains
that
overlap,

60
-­‐
80%
exhibit
textural
characteristics
that
could
be
consistent
with
those
of
the

41

FM
granite.
The
broad
range
between
60
-­‐
80%
reflects
the
uncertainty
of

characterizing
the
texture
of
detrital
grains,
which
only
preserve
a
portion
of
their

growth
history
due
to
abrasion
and
fragmentation
during
sediment
transport..


Figure
22
shows
examples
of
inconsistent
and
potentially
consistent
zoning
patterns

in
BCFM
detrital
zircons
compared
to
FM
granite
zircons.


Figure
22.
(A)
Shows
FM
granite
zircons
for
comparison
to
(B)
ca.
0.5
Ga
BCFM

zircons
with
similar
trace
element
compositions
and
similar
zoning
to
the
FM

granite
and
(C)
ca.
0.5
Ga
BCFM
zircons
with
similar
trace
element
compositions
but

different
zoning
than
the
FM
granite.
Note
that
these
grains
are
rounded
due
to

sediment
transport,
and
that
growth
zones
are
truncated
at
the
margins
of
the

grains.
All
grains
are
shown
at
the
same
scale.

42

Out
of
all
ca.
0.5
Ga
zircons
from
the
BCFM,
approximately
20%
have
fine

oscillatory
zoning
that
typically
reflects
growth
from
silicate
melt
and
therefore
an

igneous
source
rock.

An
additional
40
-­‐
60%
of
the
BCFM
detrital
grains
exhibit

textures
that
could
be
consistent
with
an
igneous
source.
Circa
0.5
Ga

BCFM
zircons

exhibiting
fine-­‐oscillatory
zoning
span
the
compositional
range
of
all
ca.
0.5
Ga

BCFM
zircons
(Figure
23).

Moreover,
the
composition
of
these
grains
overlaps
with

the
composition
of
grains
from
the
FM
granite
.

These
results
indicate
that
the
ca.

0.5
Ga
detrital
zircons
from
the
BCFM
are
closely
allied
to
the
FM
granite
and

perhaps
other
plutons
from
the
New
Mexico
Aulacogen
igneous
suite.

A

43

B


Figure
23
a-­‐b.

Trace
element
plots
comparing
FM
granite
to
ca.
0.5
Ga
BCFM

zircons
with
fine
oscillatory
zoning
indicating
an
igneous
source
and
to
all
BCFM
ca.

0.5
Ga
zircons.
Note
that
the
FM
granite
falls
within
the
bound
of
ca.
0.5
Ga
igneous

BCFM
zircons.


Together
the
U-­‐Pb
ages,
trace
element
compositions
and
textural

characteristics
suggest
that
although
the
FM
granite
cannot
account
for
all
ca.
0.5
Ga

zircons
in
the
BCFM,
the
source
of
the
ca.
0.5
Ga
zircons
was
similar
to
the
FM

granite
in
both
age
and
composition.

Moreover,
the
Ouachita
Mountains,
the

Appalachians,
and
the
Acatlan
igneous
provinces
are
the
only
other
areas
that

contain
ca.
0.5
Ga
rocks
in
the
region,
all
of
which
can
be
ruled
out
as
the
source
of

ca.
0.5
Ga
zircons
in
the
BCFM
based
on
ages
alone
(Figure
9).

When
taken
together,

these
results
suggest
that
the
rift
related
plutons
of
the
New
Mexico
Aulacogen
and

the
correlated
Oklahoma
Aulacogen,
or
clastic
sediments
derived
from
these
sources,

44

are
the
likely
source
of
ca.
0.5
Ga
zircons
in
the
BCFM.

These
results
are
consistent

with
the
eolian
transport
directions
of
the
Permian
as
discussed
by
Soreghan
and

Soreghan
(2013)
with
the
New
Mexico
Aulacogen
lying
to
the
northwest
and
the

Oklahoma
Aulacogen
lying
to
the
east
of
the
Delaware
Basin
(Figure
7).

The
conclusion
that
ca.
0.5
Ga
zircons
in
the
BCFM
were
likely
derived
from

the
New
Mexico
Aulacogen
supports
the
initial
hypothesis
that
the
ca.
0.5
Ga
zircons

can
be
accounted
for
by
local
sources
while
the
remainder
of
the
BCFM
age
spectra

can
be
accounted
for
by
the
orogenic
belts
of
North
America.

Taken
together,
these

results
demonstrate
that
the
peak-­‐matching
methodology
can
be
enhanced
by

considering
trace
element
compositions
and
textural
characteristics
as
additional

criteria,
particularly
for
resolving
local
versus
more
distal
sediment
provenance.


Ultimately,
by
precisely
pinpointing
the
sources
of
sediment,
better
constraints
can

be
placed
on
the
regional
paleogeography
of
ancient
continents.


45

REFERNCES
CITED


Amato, J., and Mack, G., 2012, Detrital zircon geochronology from the CambrianOrdovician Bliss Sandstone, New Mexico: Evidence for contrasting Grenville-age
and Cambrian sources on opposite sides of the Transcontinental Arch: GSA Bulletin;
November/December 2012; v. 124; no. 11/12; p. 1826–1840; doi:10.1130/B30657.1.
Blakey, R. C., 2013, Paleogeography and paleotectonics of Southwestern North America:
Colorado Plateau Geosystems, DVD Flagstaff, Arizona.
Brookins, D., 1974, Radiometric Age Determinations from the Florida Mountains, New
Mexico: Geology, November 1974.
Brown, G., and Clemons, R., 1983, Florida Mountains section of southwest New Mexico
overthrust belt- a reevaluation: New Mexico Geology, May 1983.
Cantine, M., Sanchez, T., George, S. and Hawkins, D., 2013, Age Distribution and
Composition of Detrital Zircons in the Permian Brushy Canyon Formation, Delaware
Basin, West Texas: Geological Society of America Abstracts with Program, v. 45,
No.5, p. 39.
Carr, M., and Gardner, M., 2000, Portrait of a Basin-floor Fan for Sandy Deep-Water
Systems, Permian Lower Brushy Canyon Fm., Delaware Mountains, West Texas:
A.H. Bouma and C.G. Stone eds., Fine-grained Turbidite Systems, American
Assocation of Petroleum Geologists, Special Publication 72, p.215-231.
co*cks, R., and Torsvik, T., 2011, The Palaeozoic geography of Laurentia and western
Laurussia: A stable craton with mobile margins: Earth-Science Reviews, v. 106, p. 151.
Duncan, C., Hoisington, A., and Hawkins, D., 2013, Insights into the Late Paleozoic
Geology of an Ancestral Rocky Mountain Range from Detrital Zircon in the Fountain
Formation, Manitou Springs, Colorado: Geological Society of America Abstracts
with Program, v. 45, No.5, p. 39.
Fedo, C., Sircombe, K., and Rainbird, R., 2003, Detrital Zircon Analysis of the
Sedimentary Record: Reviews in Mineralogy and Geochemistry, v. 53, p. 277-303.
Gardner, M., and Borer, J., 2000, Submarine Channel Architecture Along a Slope-toBasin Profile, Brushy Canyon Formation, West Texas: in Bouma, A., and Stone,
C., eds. Fine-grained Turbidite Systems: AAPG Memoir 72/SEMP Special
Publication 68.
Gehrels, G., 2012, Detrital zircon U-Pb geochronology: current methods and new
opportunities: in Busby, C. and Aroz, A., eds., Tectonics of Sedimentary Basins:
Recent Advances: Blackwell Publishing Ltd., p. 47- 62.

46

Gehrels, G., Blakey, R., Karlstrom, K., Timmons, M., Dickinson, B., and Pecha, M.,
2011, Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon,
Arizona: LITHOSPHERE, v. 3, No.3, p. 183-200.
Gehrels, G.E., and Dickinson, W.R., 1995, Detrital zircon provenance of Cambrian to
Triassic miogeoclinal and eugeoclinal strata in Nevada: American Journal of Science,
v. 295, p. 18–48, doi:10.2475/ajs.295.1.18.
Gleason, J.D., Gehrels, G.E., Dickinson, W.R., Patchett, J., and Kring, D.A., 2007,
Laurentian sources for detrital zircon grains in turbidite and deltaic sandstones of the
Pennsylvanian Haymond Formation, Marathon Assemblage, west Texas, U.S.A.:
Journal of Sedimentary Research, v. 77, p. 888-900.
Grotzinger, J., and Jordan, T., 2010, Understanding Earth: W.H. Freeman, New York.
Grimes, C., John, B., Keleman, P., Mazdab, F., Wooden, J., Cheadle, M., Hanghoj, K.,
and Schwartz, J., 2007, Trace element chemistry of zircons from oceanic crust: A
method for distinguishing detrital zircon provenance: Geology, v. 35, no. 7, p. 643646.
Hanchar, J., and Westrenen, W., 2007, Rare Earth Element Behavior in Zircon-Melt
Systems: ELEMENTS, v. 3, p. 37-42.
Harley, S., and Kelly, N., 2007, Zircon Tiny but Timely: ELEMENTS, v. 3, p. 13-18.
Karlstrom, K., Ilg, B., Hawkins, D., Williams, M., Dumond, G., Mahan, K., Bowring, S.,
2012, Vishnu basem*nt rocks of the Upper Granite Gorge: Continent formation 1.84
to 1.66 billion years ago: Geological Society of America Special Papers, p. 7-24.
Mattinson, J., 2005, Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined
annealing and multi-step partial dissolution analysis for improved precision and
accuracy of zircon ages: Chemical Geology, No. 200, p. 47-66.
McMillan, N., and McLemore, V., 2004, Cambrian-Ordovician magmatism and
extension in New Mexico and Colorado: New Mexico Bureau of Geology and
Mineral Resources, Bulletin 160.
Olszewski, T., and Erwin, D., 2009, Change and Stability in Permian Brachiopod
Communities from Western Texas: PALAIOS, v. 24, p. 27-40.
Payne, M., 1976, Basinal Sandstone Facies, Delaware Basin, West Texas and Southeast
New Mexico: The American Association of Petroleum Geologists Bulletin, v. 60, No.
4, p. 517-527.
Sahney, S. and Benton, M.J., 2008, Recovery from the Most Profound Mass Extinction of

47

all Time: Proceedings: Biological Sciences, v. 275, p. 759-765.
Schneebeli-Herman, E., 2012 Extinguishing a Permian World: Geology, v. 40, no. 3, p.
287–288; doi: 10.1130/focus032012.1.
Schoene, B., and Bowring, S., 2006, U-Pb systematics of the McClure Mountain syenite:
thermochronological constraints on the age of the 40Ar/ 39Ar standard MMhb:
Contributions to Mineralogy and Petrology, v. 151, p. 615-630.
Soreghan, G., and Soreghan, M., 2013, Tracing Clastic Delivery to the Permian
Delaware Basin, U.S.A.: Implications for Paleogeography and Circulation in
Westernmost Equatorial Pangea: Journal of Sedimentary Research, v. 83, p. 786-802.
Sun S., and W. F. McDonough, 1989, Chemical and isotopic systematics of oceanic
basalts: implications for mantle composition and processes, in Magmatism in the
Ocean Basins, edited by A. D. Saunders and M. J. Norry, Geological Soc. Special
Publ., 42, 313-345.
Talavera-Mendoza, O., Ruiz, J., Gehrels, G., Meza-Figueroa, D., Vega-Granillo, R., and
Campa-Uranga, M., 2005, U–Pb geochronology of the Acatlan Complex and
implications for the Paleozoic paleogeography and tectonic evolution of southern
Mexico: Earth and Planetary Science Letters, v. 235, p. 682-699.
Thomas, W., 2011, Detrital-zircon geochronology and sedimentary provenance:
LITHOSPHERE, v. 3, No. 4, p. 304-308.
Ward, P., Montgomery, D., and Smith, R., 2000, Altered River Morphology in South
Africa Related to the Permian Triassic Extinction: Science, v. 289, No. 5485, p.
1740-1743.

48

APPENDIX

49

Figure A1: Topographic map showing sample locations. The gray arrow shows the
location and direction of the photograph shown in Fig. A2.

Figure A2: View looking south from location shown in Fig. A1 showing sampling locations
for samples analyzed by Cantine et al. (2013).

Figure A3: View looking north across highway 180/62 to road cut location of samples
BCMC12-3A,3B, analyzed in this study. The samples were collected in the prominent
sand channel at locations to the east of the three geologists.

Appendix B: LA-ICPMS METHODS AT BOISE STATE UNIVERSITY
Provided by Dr. Mark Schmitz, Boise State University
to all Users of the A-ICPMS Laboratory
LA-ICPMS method
Zircon U-Th-Pb isotope systematics and trace element compositions were analyzed by
laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) using a
ThermoElectron X-Series II quadrupole ICPMS and New Wave Research UP-213 Nd:YAG UV
(213 nm) laser ablation system. In-house analytical protocols, standard materials and data
reduction software were used for simultaneous acquisition and real-time calibration of U-Th-Pb
ages and a suite of HFSE and REE elements using the high sensitivity and unique properties of
the interface (Xs cones), extraction lens and quadrupole analyzer of the X-Series II. Zircons are
ablated with a laser diameter of 25 microns, using fluence and pulse rates of 10-15 J/cm2 and 10
Hz, respectively, during a 60 second analysis (15 sec gas blank, 45 sec ablation) which excavates
a pit approximately 25 µm deep. Ablated material is carried by a 1 L/min He gas stream to the
nebulizer flow of the plasma. Dwell times are 5 ms for Si and Zr; 100 ms for 49Ti and 207Pb, 40
ms for 238U, 232Th, 202Hg, 204Pb, 206Pb and 208Pb isotopes; and 10 ms all other HFSE and REE
elements. Background count rates for each analyte are obtained prior to each spot analysis and
subtracted from the raw count rate for each analyte.
For concentration calculations, background-subtracted count rates for each analyte are
internally normalized to 29Si, and calibrated with respect to NIST SRM-612, USGS BCR-2 and
BIR-1 glasses as the primary standards. Representative REE patterns, Th/U and Ti thermometry
results for a set of international standards are reported in Figure 1.

Figure 1: Trace element data collected by LA-ICPMS at Boise State University. Boxes in Ti
versus Th/U represent one standard deviation, ranges for Ti concentrations are max-min values.
Variations in most standards represent intercrystalline variations; results from the hom*ogeneous
Orapa kimberlite megacryst zircon represent the analytical precision of our LA-ICPMS method.
Apparent crystallization temperatures calculated using the Ti-in-zircon thermometric formulation
of Ferry and Watson (2007), assuming unity of titania and silica activity. REE patterns represent
mean values of n=7 to 95 analyses.

For U-Th-Pb age analysis, instrumental fractionation of the background-subtracted
Pb/238U, 207Pb/206Pb, and 208Pb/232Th ratios is corrected, and ages calibrated with respect to
interspersed measurements of the Plesovice zircon standard (Slama et al., 2008). Signals at mass
204 are indistinguishable from zero following subtraction of mercury backgrounds measured
during the gas blank (< 1000 cps 202Hg), thus ages are reported without common Pb correction.
Radiogenic isotope ratio and age error propagation for each detrital grain analysis includes
uncertainty contributions from counting statistics, background subtraction, common Pb
correction, and standard calibration (based on the standard deviation of the isotope ratio
measurements of the standard over the course of the experiment). Error propagation for nondetrital spot analyses exclude standard calibration uncertainty, which is instead propagated in
quadrature following group statistics (e.g. weighted mean calculations); standard calibration
uncertainties range from 1-2% (2σ) for a given experiment. International standards FC-1, R33
and Temora as measured as unknowns, interspersed throughout experimental runs as quality
control standards. Spot ages for the zircon standard R33 run as an unknown (calibrated using
Plesovice as primary standard) are illustrated in Figure 2, and indicate a 3-4% (2σ) external
reproducibility for the method.
206

Figure 2. LA-ICPMS U-Pb
geochronological results for
the R33 zircon standard as an
unknown calibrated to the
Plesovice zircon standard.
Individual error ellipses do
not
include
standard
calibration errors of 1.5%
(2σ). Weighted mean ages
have errors reported at the
95% conf. interval (expanded
by the square root of the
MSWD), and illustrate that
excess scatter is attributable
to calibration uncertainties.

Appendix C: LA-ICPMS U-Pb isotope ratios and ages for zircons.

Analysis

U

Th

Pb*

ppm

ppm

ppm

Th/U

206Pb
204Pb

Corrected isotope ratios
207Pb* ±2σ
207Pb* ±2σ
206Pb* ±2σ
206Pb* (%)
235U* (%)
238U (%)

error
corr.

Apparent ages (Ma)
207Pb* ±2σ 207Pb* ±2σ 206Pb* ±2σ
206Pb* (Ma)
235U (Ma) 238U* (Ma)

%
disc.

Florida Mountain Granite (sample 08FM-10 of Amato and Mack, 2012; N32°08.929' W107°39.163')
08FM-10DH 22

163

125

17.6

0.77

2357

0.05735

4.5

0.6517

6.0

0.08241

4.0

0.66

505

99

510

24

511

20

1

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

23
25
26
28
29

192
127
136
153
59

172
105
119
119
37

21.6
13.9
15.2
16.0
6.1

0.90
0.83
0.87
0.78
0.62

381
281
352
974
618

0.05790
0.05700
0.05810
0.05671
0.05635

4.0
5.3
3.0
3.7
4.7

0.6604
0.6519
0.6723
0.6375
0.6449

5.5
6.3
4.6
5.3
6.4

0.08273
0.08295
0.08392
0.08154
0.08300

3.8
3.3
3.5
3.7
4.3

0.69
0.53
0.76
0.71
0.67

526
88
491 117
533
65
480
82
466 104

515
510
522
501
505

22
25
19
21
25

512
514
519
505
514

19
16
17
18
21

3
5
3
5
11

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

31
32
33
34
36
37

86
70
105
117
127
150

64
47
84
105
81
138

9.2
7.6
11.7
12.9
13.7
16.4

0.75
0.67
0.79
0.90
0.64
0.92

164
337
403
1985
492
447

0.05973
0.05788
0.05745
0.05849
0.05948
0.05734

4.1
5.9
4.1
3.5
3.8
3.8

0.6804
0.6889
0.6826
0.6762
0.7054
0.6559

6.1
7.1
6.1
5.3
4.7
5.1

0.08262
0.08632
0.08617
0.08384
0.08602
0.08296

4.5
4.0
4.5
4.0
2.7
3.4

0.73
0.57
0.74
0.75
0.58
0.66

594
90
525 129
509
91
548
76
585
83
505
84

527
532
528
524
542
512

25
30
25
22
20
20

512
534
533
519
532
514

22
21
23
20
14
17

14
2
5
6
9
2

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

38
39
42
44

93
131
152
61

60
81
127
36

9.8
13.7
16.6
6.5

0.64
0.62
0.83
0.60

226
473
2932
109

0.05729
0.05822
0.05825
0.05679

5.1
3.5
4.4
7.0

0.6658
0.6740
0.6634
0.6764

6.9
5.0
5.6
9.2

0.08429
0.08397
0.08260
0.08639

4.6
3.6
3.4
6.0

0.66
0.72
0.62
0.65

503 113
538
76
539
96
483 154

518
523
517
525

28
20
23
38

522
520
512
534

23
18
17
31

4
4
5
11

08FM-10DH 46
08FM-10DH 49
08FM-10DH 50

151
121
175

105
88
121

16.2
13.3
18.7

0.69
0.73
0.69

1000
1283
1087

0.05759
0.05718
0.05778

3.5
3.6
4.4

0.6548
0.6526
0.6488

5.2
5.7
6.1

0.08246
0.08278
0.08143

3.9
4.4
4.2

0.74
0.78
0.69

514
498
522

76
79
96

511
510
508

21
23
24

511
513
505

19
22
20

1
3
3

08FM-10DH 51
08FM-10DH 53

168
100

117
70

18.6
11.2

0.70
0.71

995
208

0.05800
0.05744

2.9
5.6

0.6741
0.6802

4.6
7.2

0.08430
0.08589

3.5
4.6

0.77
0.63

530
64
508 124

523
527

19
30

522
531

18
23

2
5

08FM-10DH 54
08FM-10DH 55
08FM-10DH 56

101
78
104

73
56
81

10.8
8.3
11.1

0.73
0.72
0.78

757
700
2510

0.05679
0.05703
0.05783

6.7
5.6
6.2

0.6307
0.6369
0.6552

7.8
7.3
7.7

0.08055
0.08100
0.08218

4.1
4.6
4.6

0.52
0.64
0.60

483 147
493 123
523 135

497
500
512

31
29
31

499
502
509

20
22
22

3
2
3

08FM-10DH 57
08FM-10DH 58
08FM-10DH 64

148
181
154

122
167
140

16.0
20.5
16.9

0.83
0.92
0.91

628
4935
1984

0.05761
0.05703
0.05744

4.4
4.6
3.3

0.6528
0.6631
0.6593

5.8
6.1
5.4

0.08218
0.08433
0.08324

3.8
3.9
4.3

0.65
0.65
0.79

515
97
493 102
509
72

510
517
514

23
25
22

509
522
515

19
20
21

1
6
1

08FM-10DH 70
08FM-10DH 72

165
69

155
53

18.6
7.6

0.94
0.76

996
264

0.05791
0.05810

3.4
6.7

0.6733
0.6841

4.8
8.4

0.08432
0.08540

3.4
5.2

0.71
0.62

526
74
533 146

523
529

19
35

522
528

17
26

1
1

08FM-10DH 73
08FM-10DH 77
08FM-10DH 79

83
148
90

63
129
63

9.1
16.8
9.6

0.76
0.87
0.70

756
4136
1882

0.05612
0.05714
0.05914

6.2
4.1
3.3

0.6664
0.6793
0.6710

7.6
5.7
4.4

0.08613
0.08622
0.08229

4.5
4.0
2.9

0.58
0.69
0.67

457 138
497
91
572
71

519
526
521

31
24
18

533
533
510

23
20
14

17
8
11

08FM-10DH 84
08FM-10DH 85
08FM-10DH 87

179
78
113

143
48
80

19.5
8.5
12.3

0.80
0.62
0.70

56280
320
210

0.05815
0.05808
0.05798

4.6
5.1
5.3

0.6467
0.6802
0.6653

5.6
6.1
6.3

0.08066
0.08493
0.08322

3.1
3.4
3.4

0.55
0.55
0.54

536 101
533 112
529 117

506
527
518

22
25
26

500
525
515

15
17
17

7
1
3

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.762' W104°50.345' ±19ft)
BCMC12-3A L 001

341

239

35.2

0.70

830

0.05758

2.7

0.6507

5.8

0.08196

5.2

0.89

514

58

509

23

508

25

1

BCMC12-3A L 002
BCMC12-3A L 003

234
103

129
55

23.7
10.5

0.55
0.53

5645
1021

0.05923
0.05968

2.9
3.8

0.6801
0.6887

5.5
6.8

0.08327
0.08369

4.7
5.6

0.85
0.83

576
592

64
82

527
532

23
28

516
518

23
28

11
13

BCMC12-3A L 004
BCMC12-3A L 005
BCMC12-3A L 006

93
123
104

34
67
39

8.9
12.2
29.3

0.37
0.54
0.38

51411
353
1186

0.05869
0.05707
0.08510

5.3
3.4
2.7

0.6637
0.6397
2.7564

7.6
6.1
5.2

0.08202
0.08130
0.23492

5.4
5.1
4.5

0.71
0.83
0.85

556 116
494
74
1318
53

517
502
1344

31
24
39

508
504
1360

26
25
55

9
2
4

BCMC12-3A L 009
BCMC12-3A L 010
BCMC12-3A L 011

184
60
161

86 127.3
7 20.3
49 14.9

0.47
0.11
0.30

3954
6310
1552

0.18935
0.10651
0.05955

1.4
2.8
3.8

13.4480
4.3386
0.6450

5.0
5.8
6.3

0.51510
0.29543
0.07855

4.8
5.1
5.0

0.96
0.87
0.80

2737
1741
587

24
52
82

2712
1701
505

47
48
25

2678 105
1669
75
487
24

3
5
18

551
1815
458
2763
1794

79
35
74
27
60

506
1794
501
2712
1735

25
48
24
52
49

496
24
1775
83
511
26
2644 115
1686
72

10
3
12
5
7

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L

012
014
016
017
018

210
59 19.5 0.28
995
67
63 30.6 0.94
2126
170
81 17.2 0.47
530
96
100 74.9 1.04
3513
1/13/2014
31
7
6:38:25
11.0 PM
0.23(Run: 120
1)

0.05856
0.11096
0.05613
0.19246
0.10967

3.6
1.9
3.3
1.6
3.3

0.6460
4.8504
0.6380
13.4545
4.5209

6.2
5.7
6.2
5.5
5.9

0.08000
0.31704
0.08243
0.50701
0.29899

5.1
5.3
5.2
5.3
4.9

0.82
0.94
0.84
0.96
0.83

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L

019
020
021
022

1/13/2014
188
107
6:40:07
19.2
1/13/2014
173
64
6:41:48
16.3
1/13/2014
102
47
6:50:30
10.3
1/13/2014
165
91
6:52:12
16.3

PM
0.57(Run: 963
1)
PM
0.37(Run: 926
1)
PM
0.46(Run:
13259
1)
PM
0.55(Run: 755
1)

0.05820
0.05958
0.05787
0.05783

3.1
2.9
5.5
3.5

0.6535
0.6540
0.6644
0.6348

5.7
5.9
8.1
6.3

0.08143
0.07961
0.08328
0.07962

4.7
5.2
5.9
5.2

0.84
0.87
0.73
0.83

537
68
588
63
525 121
523
77

511
511
517
499

23
24
33
25

505
494
516
494

23
25
29
25

6
17
2
6

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L
L

023
024
025
026
029
030

1/13/2014
154
57
6:53:54
57.6
1/13/2014
100
55
6:55:36
9.9
1/13/2014
68
37
6:57:18
6.7
1/13/2014
324
82
6:59:00
111.1
1/13/2014
119
86
7:04:06
12.1
1/13/2014
261
177
7:05:47
27.5

PM
0.37(Run:3878
1)
PM
0.55(Run: 763
1)
PM
0.54(Run: 723
1)
PM
0.25(Run:5114
1)
PM
0.73(Run: 730
1)
PM
0.68(Run:1059
1)

0.10600
0.05838
0.06030
0.10446
0.05900
0.05740

1.6
5.1
4.9
1.6
6.1
2.4

4.4806
0.6535
0.6650
4.2028
0.6594
0.6703

5.7
7.2
8.1
5.2
8.4
6.0

0.30657
0.08119
0.07999
0.29180
0.08106
0.08469

5.5
5.1
6.5
4.9
5.7
5.5

0.96
0.70
0.80
0.95
0.68
0.91

1732
29
544 113
614 105
1705
29
567 134
507
54

1727
511
518
1675
514
521

47
29
33
42
34
24

1724
503
496
1651
502
524

83
25
31
71
28
28

1
8
20
4
12
3

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L

031
032
033
034
035

1/13/2014
58
35
7:11:06
5.7
1/13/2014
103
69
7:12:47
10.6
1/13/2014
234
97
7:14:29
63.8
1/13/2014
123
74
7:16:10
45.5
1/13/2014
108
62
7:17:52
10.7

PM
0.60(Run: 172
1)
PM
0.67(Run: 794
1)
PM
0.42(Run:
109459
1)
PM
0.61(Run:6969
1)
PM
0.58(Run: 665
1)

0.05790
0.05839
0.08560
0.10458
0.05658

4.8
3.3
2.2
2.6
3.8

0.6373
0.6630
2.6810
4.2102
0.6250

8.0
6.8
6.6
5.0
6.8

0.07982
0.08236
0.22716
0.29197
0.08011

6.3
5.9
6.3
4.3
5.6

0.79
0.87
0.95
0.86
0.83

526 106
544
73
1329
42
1707
47
475
85

501
516
1323
1676
493

32
28
49
41
27

495
510
1320
1651
497

30
29
75
63
27

6
7
1
4
5

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L
L

036
037
038
040
041
042

1/13/2014
155
85
7:19:34
15.5
1/13/2014
35
15
7:21:16
3.4
1/13/2014
501
77
7:22:58
136.4
1/13/2014
92
44
7:26:22
8.9
1/13/2014
117
57
7:35:04
48.9
1/13/2014
157
95
7:36:46
112.7

PM
0.55(Run: 810
1)
PM
0.43(Run: 195
1)
PM
0.15(Run:
40101
1)
PM
0.48(Run: 796
1)
PM
0.49(Run:2402
1)
PM
0.60(Run:
40705
1)

0.05762
0.05938
0.09053
0.05747
0.11391
0.19113

4.9
9.2
1.6
4.6
1.8
1.4

0.6453 7.1
0.6606 11.6
2.9848 5.3
0.6247 6.8
5.1241 4.9
13.6172 5.1

0.08122
0.08069
0.23913
0.07883
0.32625
0.51672

5.1
7.1
5.1
5.0
4.6
4.9

0.72
0.61
0.95
0.73
0.93
0.96

515 108
581 199
1437
31
510 102
1863
33
2752
23

506
515
1404
493
1840
2723

28
47
41
27
42
48

503
25
500
34
1382
63
489
23
1820
72
2685 107

2
14
4
4
3
3

1/13/2014
67
27
7:38:28
6.5 PM
0.40(Run: 797
1)
1/13/2014
122
153
7:41:51
99.6 PM
1.26(Run:4892
1)
1/13/2014
307
116
7:43:33
29.0 PM
0.38(Run:2616
1)

0.05502
0.19012
0.06028

6.5
1.6
3.2

0.6130
13.2363
0.6558

0.08081
0.50494
0.07890

5.6
5.1
5.1

0.65
0.96
0.85

413 146
2743
26
614
68

485
2697
512

33
50
24

501
27
2635 110
490
24

22
5
21

BCMC12-3A L 043
BCMC12-3A L 045
BCMC12-3A L 046

8.6
5.3
6.0

Appendix C: LA-ICPMS U-Pb isotope ratios and ages for zircons - continued.

Analysis

U

Th

Pb*

ppm

ppm

ppm

Th/U

206Pb
204Pb

Corrected isotope ratios
207Pb* ±2σ
207Pb* ±2σ
206Pb* ±2σ
206Pb* (%)
235U* (%)
238U (%)

error
corr.

Apparent ages (Ma)
207Pb* ±2σ 207Pb* ±2σ 206Pb* ±2σ
206Pb* (Ma)
235U (Ma) 238U* (Ma)

%
disc.

BCMC12-3A L 047
BCMC12-3A L 048

1/13/2014
418
79
7:45:15
150.2 PM
0.19(Run:9503
1)
1/13/2014
93
42
7:46:57
9.3 PM
0.45(Run: 335
1)

0.11787
0.05742

2.1
5.0

4.9305
0.6474

5.0
7.7

0.30338
0.08178

4.5
5.9

0.90
0.76

1924
39
508 110

1807
507

42
31

1708
507

68
29

13
0

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L

049
052
053
054
055

1/13/2014
325
122
7:48:39
98.6
1/13/2014
48
19
7:57:22
10.9
1/13/2014
126
57
7:59:04
28.8
1/13/2014
253
138
8:00:46
25.6
1/13/2014
173
105
8:02:28
17.8

PM
0.38(Run:6460
1)
PM
0.39(Run: 917
1)
PM
0.46(Run:1348
1)
PM
0.54(Run:1349
1)
PM
0.61(Run:2139
1)

0.09297
0.07699
0.07942
0.05820
0.06064

2.2
5.5
1.8
2.6
2.8

3.1735
1.9888
2.0119
0.6537
0.6717

4.6
9.1
5.6
5.9
5.7

0.24758
0.18735
0.18372
0.08145
0.08034

4.0
7.3
5.3
5.3
5.0

0.88
0.80
0.95
0.90
0.87

1487
42
1121 110
1183
35
537
57
626
60

1451
1112
1120
511
522

35
62
38
24
23

1426
1107
1087
505
498

52
74
53
26
24

5
1
9
6
21

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L
L

057
059
060
061
062
063

1/13/2014
62
25
8:05:52
13.8
1/13/2014
137
46
8:09:16
13.0
1/13/2014
102
67
8:10:57
10.1
1/13/2014
92
47
8:19:40
64.5
1/13/2014
219
132
8:21:22
22.2
1/13/2014
58
19
8:23:04
5.5

PM
0.41(Run:1487
1)
PM
0.33(Run:2568
1)
PM
0.66(Run:1497
1)
PM
0.51(Run:
75409
1)
PM
0.60(Run:6026
1)
PM
0.33(Run: 765
1)

0.07966
0.06033
0.06017
0.19644
0.05825
0.06037

3.1
4.1
4.6
1.5
3.6
7.1

2.0255
0.6701
0.6466
14.0940
0.6564
0.6667

6.2
6.3
6.9
5.2
6.4
9.2

0.18441
0.08056
0.07793
0.52037
0.08173
0.08008

5.4
4.7
5.1
5.0
5.3
5.8

0.87
0.75
0.74
0.96
0.83
0.63

1189
61
615
89
610 100
2797
24
539
79
617 153

1124
521
506
2756
512
519

42
26
27
50
26
37

1091
54
499
23
484
24
2701 110
506
26
497
28

9
20
21
4
6
20

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L

064
065
066
067

1/13/2014
128
94
8:24:45
13.0
1/13/2014
256
116
8:26:26
24.3
1/13/2014
35
15
8:28:08
12.4
1/13/2014
73
40
8:29:50
7.2

PM
0.74(Run: 672
1)
PM
0.45(Run:1152
1)
PM
0.42(Run: 638
1)
PM
0.55(Run:4901
1)

0.06015
0.05855
0.10449
0.05673

4.3
2.8
4.0
5.9

0.6536
0.6417
4.2257
0.6381

7.0
6.0
7.5
7.6

0.07882
0.07949
0.29330
0.08157

5.5
5.3
6.3
4.8

0.79
0.88
0.84
0.63

609
94
550
61
1705
74
481 130

511
503
1679
501

28
24
62
30

489
493
1658
505

26
25
93
23

20
11
3
5

BCMC12-3A L 068
BCMC12-3A L 069
BCMC12-3A L 070

1/13/2014
46
31
8:31:32
16.6 PM
0.68(Run: 799
1)
1/13/2014
279
167
8:33:14
28.1 PM
0.60(Run:
53392
1)
1/13/2014
143
82
8:34:56
14.3 PM
0.57(Run:9159
1)

0.09779
0.05902
0.05620

4.0
3.3
4.8

3.7784
0.6681
0.6305

6.8
5.9
6.9

0.28023
0.08210
0.08138

5.5
4.9
4.9

0.81
0.83
0.71

1582
74
568
72
460 107

1588
520
496

55
24
27

1593
509
504

78
24
24

1
11
10

BCMC12-3A M 003
BCMC12-3A M 006

1/15/2014
59
486:10:06
44.1 PM
0.80 (Run:
1136
1)
1/15/2014
80
576:15:12
31.5 PM
0.71 (Run: 747
1)

0.18803
0.09905

1.6
2.5

13.5540
4.0607

3.8
5.0

0.52279
0.29734

3.5
4.3

0.91
0.86

2725
1606

26
47

2719
1646

36
40

2711
1678

77
63

1
5

BCMC12-3A M 007
BCMC12-3A M 009
BCMC12-3A M 010

1/15/2014
294
1906:16:54
80.1 PM
0.64 (Run:
31593
1)
1/15/2014
97
636:20:18
31.9 PM
0.65 (Run:
2955
1)
1/15/2014
227
1456:22:00
25.0 PM
0.64 (Run: 925
1)

0.07991
0.09041
0.05912

2.1
2.3
2.2

2.3281
3.1504
0.6926

3.9
3.9
4.2

0.21130
0.25274
0.08496

3.3
3.2
3.5

0.84
0.80
0.85

1195
1434
572

41
45
49

1221
1445
534

27
30
17

1236
1453
526

37
41
18

4
1
8

BCMC12-3A M 012
BCMC12-3A M 013
BCMC12-3A M 014

1/15/2014
111
446:32:25
23.2 PM
0.40 (Run:
2186
1)
1/15/2014
307
1166:34:07
103.3 PM
0.38 (Run:
17853
1)
1/15/2014
137
1336:35:49
13.3 PM
0.97 (Run: 708
1)

0.07276
0.09527
0.05580

3.3
2.2
6.4

1.7204
3.5972
0.5328

5.2
4.6
8.4

0.17148
0.27385
0.06925

4.0
4.1
5.4

0.77
0.88
0.64

1007
68
1533
41
445 142

1016
1549
434

33
37
29

1020
1560
432

38
56
22

1
2
3

BCMC12-3A M 015
BCMC12-3A M 016

1/15/2014
132
336:37:31
64.0 PM
0.25 (Run:
4736
1)
1/15/2014
166
326:39:13
63.5 PM
0.20 (Run:
20408
1)

0.13895
0.10634

1.8
2.0

7.5404
4.7743

4.9
4.1

0.39358
0.32563

4.6
3.6

0.93
0.87

2214
1738

32
37

2178
1780

44
34

2139
1817

84
57

4
5

BCMC12-3A M 017
BCMC12-3A M 018
BCMC12-3A M 212

1/15/2014
190
686:40:55
13.3 PM
0.36 (Run: 725
1)
1/15/2014
105
606:42:38
27.0 PM
0.57 (Run: 759
1)
1/13/2014
102
658:40:16
25.8 PM
0.64 (Run:
1654
1)

0.05355
0.08216
0.07880

6.1
2.6
3.0

0.4342
2.2380
2.1787

8.1
5.6
5.3

0.05880
0.19755
0.20052

5.3
5.0
4.4

0.66
0.89
0.83

352 138
1249
50
1167
59

366
1193
1174

25
39
37

368
1162
1178

19
53
47

5
8
1

BCMC12-3A M 214
BCMC12-3A M 216
BCMC12-3A M 217

1/13/2014
106
378:43:40
10.5 PM
0.35 (Run:
1203
1)
1/13/2014
92
388:47:03
8.9 PM
0.41 (Run: 772
1)
1/13/2014
98
518:48:44
20.3 PM
0.52 (Run:
2814
1)

0.06048
0.05831
0.07446

4.1
3.6
2.3

0.6950
0.6434
1.6815

7.0
5.9
5.5

0.08334
0.08003
0.16380

5.6
4.6
5.0

0.81
0.79
0.91

621
541
1054

89
79
47

536
504
1002

29
23
35

516
496
978

28
22
45

18
9
8

BCMC12-3A M 218
BCMC12-3A M 219
BCMC12-3A M 220

1/13/2014
28
188:50:27
6.4 PM
0.67 (Run: 616
1)
1/13/2014
103
768:52:08
11.3 PM
0.74 (Run: 352
1)
1/13/2014
110
488:53:50
9.1 PM
0.44 (Run:
1790
1)

0.07775
0.05663
0.05522

6.8
5.9
5.5

1.8579
0.6478
0.5160

8.8
7.8
8.2

0.17331
0.08296
0.06777

5.7
5.1
6.0

0.64
0.66
0.74

1141 134
477 130
421 123

1066
507
422

58
31
28

1030
514
423

54
25
25

10
8
0

BCMC12-3A M 221
BCMC12-3A M 222

1/13/2014
153
828:55:32
16.0 PM
0.53 (Run: 685
1)
1/13/2014
10
79:04:19
6.6 PM
0.65 (Run: 611
1)

0.05733
0.17218

4.2
4.0

0.6636
10.8183

6.2
6.4

0.08394
0.45570

4.7
5.0

0.75
0.78

504
2579

91
67

517
2508

25
60

520
23
2421 102

3
7

BCMC12-3A M 223
BCMC12-3A M 225
BCMC12-3A M 228

1/13/2014
86
1369:06:01
76.9 PM
1.58 (Run:
10285
1)
1/13/2014
113
409:09:25
11.1 PM
0.35 (Run: 377
1)
1/13/2014
96
699:14:29
10.1 PM
0.72 (Run: 331
1)

0.19528
0.06027
0.05844

2.4
5.1
5.1

14.0964
0.6829
0.6431

6.0
8.0
8.4

0.52355
0.08217
0.07981

5.5
6.1
6.7

0.92
0.77
0.80

2787
39
613 110
546 111

2756
529
504

57
33
34

2714 122
509
30
495
32

3
18
10

BCMC12-3A M 229
BCMC12-3A M 230
BCMC12-3A M 231

1/13/2014
228
1049:16:11
22.0 PM
0.46 (Run: 448
1)
1/13/2014
44
579:17:53
16.9 PM
1.29 (Run: 779
1)
1/13/2014
42
479:19:35
35.1 PM
1.13 (Run:
2693
1)

0.05791
0.09624
0.18827

3.5
4.1
3.1

0.6302
3.3192
14.1344

6.5
6.6
8.1

0.07893
0.25013
0.54448

5.5
5.1
7.5

0.84
0.77
0.93

527
1553
2727

77
78
50

496
1486
2759

26
51
77

490
26
1439
65
2802 171

7
8
3

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M

232
233
234
235
237

1/13/2014
60
399:24:54
43.7
1/13/2014
84
269:26:36
63.8
1/13/2014
40
239:28:17
9.0
1/13/2014
169
1209:29:59
16.2
1/13/2014
170
809:33:23
16.2

PM
0.64 (Run:
17687
1)
PM
0.31 (Run:
3383
1)
PM
0.57 (Run: 846
1)
PM
0.71 (Run:
7998
1)
PM
0.47 (Run:
1441
1)

0.18402
0.21931
0.07569
0.05532
0.05906

2.4
3.4
3.7
4.8
5.1

13.2176
17.3878
1.8875
0.5459
0.6299

6.7
7.1
7.1
8.4
9.4

0.52094
0.57501
0.18085
0.07158
0.07735

6.2
6.2
6.0
6.8
8.0

0.94
0.88
0.85
0.82
0.84

2689
39
2976
55
1087
74
425 108
569 110

2695
2956
1077
442
496

63
68
47
30
37

2703 138
2928 146
1072
59
446
29
480
37

1
2
2
5
16

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M

238
240
241
242

1/13/2014
72
489:35:05
33.0
1/13/2014
128
289:38:28
86.8
1/13/2014
124
959:40:10
13.7
1/13/2014
77
339:48:53
21.0

PM
0.67 (Run:
2992
1)
PM
0.22 (Run:
1895
1)
PM
0.77 (Run:
3850
1)
PM
0.43 (Run: 566
1)

0.12583
0.19740
0.05859
0.08517

3.0
1.9
5.1
2.5

5.8683
14.5063
0.6660
2.6183

6.1
5.3
7.3
5.3

0.33824
0.53298
0.08244
0.22295

5.3
5.0
5.3
4.7

0.87
0.93
0.72
0.88

2041
53
2805
31
552 110
1319
49

1957
2783
518
1306

53
50
30
39

1878
87
2754 111
511
26
1297
55

9
2
8
2

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M
M

243
244
245
246
247
248

1/13/2014
94
1049:50:35
47.3
1/13/2014
70
299:52:16
6.9
1/13/2014
149
989:53:58
56.5
1/13/2014
86
259:55:40
31.2
1/13/2014
344
1319:57:22
72.7
1/13/2014
175
779:59:04
39.2

PM
1.11 (Run:
4573
1)
PM
0.41 (Run:
2464
1)
PM
0.66 (Run:
9681
1)
PM
0.29 (Run:
1620
1)
PM
0.38 (Run:
7109
1)
PM
0.44 (Run:
15246
1)

0.11536
0.05913
0.10442
0.10837
0.07405
0.07520

2.5
6.3
2.0
2.3
1.9
2.2

5.3906
0.6757
4.1101
4.4769
1.8025
1.9213

5.0
7.8
4.8
4.9
4.7
5.0

0.33891
0.08289
0.28548
0.29962
0.17655
0.18530

4.4
4.7
4.3
4.4
4.2
4.5

0.87
0.60
0.91
0.89
0.91
0.90

1885
45
572 136
1704
36
1772
41
1043
39
1074
45

1883
524
1656
1727
1046
1089

43
32
39
41
30
34

1881
513
1619
1689
1048
1096

72
23
62
65
41
46

0
11
6
5
1
2

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M

249
250
251
252
254

1/13/2014
135
7110:00:46
51.8 0.52
PM
1/13/2014
62
3310:02:28
13.2 0.53
PM
1/13/2014
103
5010:04:09
24.8 0.49
PM
1/13/2014
142
9210:09:28
14.4 0.64
PM
1/13/2014
221
6510:12:52
84.7 0.29
PM

(Run:
5290
1)
(Run:
1015
1)
(Run:
903
1)
(Run:
1831
1)
(Run:
10294
1)

0.10708
0.07640
0.08111
0.05723
0.11101

2.1
2.7
3.2
4.3
1.6

4.4723
1.8308
2.1913
0.6369
4.8777

4.5
5.5
6.1
6.4
4.9

0.30293
0.17379
0.19594
0.08072
0.31868

4.0
4.8
5.2
4.7
4.6

0.89
0.87
0.85
0.74
0.95

1750
1106
1224
500
1816

38
54
63
94
29

1726
1057
1178
500
1798

38
36
43
25
41

1706
1033
1153
500
1783

60
46
55
23
72

3
7
6
0
2

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M
M

255
256
257
258
259
260

1/13/2014
159
8010:14:34
18.9 0.50
PM
1/13/2014
281
22510:16:16
62.9 0.80
PM
1/13/2014
46
2710:17:58
9.8 0.58
PM
1/13/2014
60
2610:19:40
20.8 0.42
PM
1/13/2014
136
7410:21:22
28.9 0.54
PM
1/13/2014
82
2710:23:04
30.3 0.34
PM

(Run:
1454
1)
(Run:
4049
1)
(Run:
1045
1)
(Run:
727
1)
(Run:
7162
1)
(Run:
2416
1)

0.06079
0.07553
0.07867
0.10104
0.07318
0.10787

4.4
2.5
4.6
3.1
2.8
2.1

0.8152
1.7380
1.7917
3.8971
1.6857
4.4987

6.6
5.4
6.8
5.7
5.8
5.0

0.09726
0.16688
0.16518
0.27972
0.16706
0.30248

4.9
4.9
5.1
4.8
5.1
4.5

0.75
0.89
0.74
0.84
0.88
0.90

632
1083
1164
1643
1019
1764

94
49
91
58
56
39

605
1023
1042
1613
1003
1731

30
35
45
46
37
41

598
995
985
1590
996
1704

28
45
47
68
47
67

6
9
17
4
2
4

1/13/2014
79
5310:33:31
21.7 0.67
PM (Run:
2235
1)
1/13/2014
115
14510:36:55
52.8 1.26
PM (Run:
5630
1)
1/13/2014
165
7510:38:36
41.1 0.45
PM (Run:
1132
1)

0.08173
0.10997
0.08036

3.3
2.5
3.4

2.3340
4.4525
2.2269

5.5
5.5
6.5

0.20711
0.29364
0.20100

4.4
4.9
5.5

0.80
0.89
0.85

1239
1799
1206

65
46
67

1223
1722
1190

39
46
45

1213
1660
1181

49
72
59

2
9
2

BCMC12-3A M 262
BCMC12-3A M 264
BCMC12-3A M 265

Appendix C: LA-ICPMS U-Pb isotope ratios and ages for zircons - continued.

Analysis

U

Th

Pb*

ppm

ppm

ppm

Th/U

206Pb
204Pb

Corrected isotope ratios
207Pb* ±2σ
207Pb* ±2σ
206Pb* ±2σ
206Pb* (%)
235U* (%)
238U (%)

error
corr.

Apparent ages (Ma)
207Pb* ±2σ 207Pb* ±2σ 206Pb* ±2σ
206Pb* (Ma)
235U (Ma) 238U* (Ma)

%
disc.

BCMC12-3A M 266
BCMC12-3A M 268

1/13/2014
59
4710:40:17
42.0 0.80
PM (Run:
1506
1)
1/13/2014
62
3010:43:41
6.2 0.48
PM (Run:
121
1)

0.18056
0.05598

3.5
7.6

12.3183 6.0
0.6335 10.4

0.49478
0.08208

4.9
7.1

0.82
0.69

2658
57
451 168

2629
498

57
41

2591 105
509
35

3
13

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M

269
270
271
272
273

1/13/2014
496
15910:45:23
168.6 0.32
PM
1/13/2014
30
2010:47:05
7.3 0.68
PM
1/13/2014
199
5710:48:47
39.1 0.29
PM
1/13/2014
67
3010:54:05
13.4 0.45
PM
1/13/2014
97
27110:55:47
104.0 2.80
PM

(Run:
5265
1)
(Run:
488
1)
(Run:
1424
1)
(Run:
624
1)
(Run:
5437
1)

0.10227
0.07311
0.07562
0.07390
0.18817

2.1
6.0
2.6
4.9
2.6

3.9370
1.8551
1.7404
1.6566
12.9458

6.6
8.7
7.1
7.8
7.5

0.27920
0.18402
0.16692
0.16258
0.49899

6.2
6.3
6.6
6.0
7.0

0.95
0.72
0.93
0.78
0.94

1666
39
1017 121
1085
52
1039
98
2726
43

1621
1065
1024
992
2676

53
57
46
49
70

1587
88
1089
63
995
61
971
54
2609 150

5
8
9
7
5

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M

274
276
277
279
280

1/13/2014
209
10710:57:29
50.2 0.51
PM
1/13/2014
46
2711:00:53
10.4 0.60
PM
1/13/2014
41
3011:02:34
9.3 0.73
PM
1/13/2014
75
3511:05:58
14.4 0.47
PM
1/13/2014
549
25011:07:40
45.6 0.45
PM

(Run:
3648
1)
(Run:
1547
1)
(Run:
384
1)
(Run:
729
1)
(Run:
2172
1)

0.08006
0.07825
0.07761
0.07388
0.05514

2.6
4.0
5.9
3.5
3.4

2.0825
1.8616
1.7412
1.5807
0.5135

6.6
7.2
8.4
6.1
5.5

0.18866
0.17255
0.16270
0.15518
0.06754

6.0
6.0
6.0
5.0
4.4

0.92
0.83
0.71
0.82
0.79

1198
50
1153
79
1137 118
1038
71
418
76

1143
1068
1024
963
421

45
47
54
38
19

1114
1026
972
930
421

62
57
54
43
18

8
12
16
11
1

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.769' W104°50.307' ±19ft)
BCMC12-3B L 001
BCMC12-3B L 071
BCMC12-3B L 072

1/15/2014
80
32
6:06:40
7.6 PM
0.40(Run:1425
1)
1/13/2014
72
93
11:47:16
25.6 PM
1.28 (Run:
2153
1)
1/13/2014
76
53
11:48:58
8.0 PM
0.70 (Run:501
1)

0.05732
0.08789
0.05615

5.4
3.2
5.4

0.6412
2.9703
0.6425

7.3
6.2
7.6

0.08114
0.24512
0.08298

4.9
5.3
5.3

0.67
0.86
0.70

504 119
1380
61
458 120

503
1400
504

29
47
30

503
1413
514

24
68
26

0
3
13

BCMC12-3B L 073
BCMC12-3B L 074
BCMC12-3B L 075

1/13/2014
123
88
11:50:40
12.9 PM
0.71 (Run:806
1)
1/13/2014
178
130
11:52:22
18.6 PM
0.73 (Run:
1042
1)
1/13/2014
84
70
11:54:04
8.9 PM
0.83 (Run:211
1)

0.05805
0.05776
0.05690

3.9
3.6
6.1

0.6572
0.6555
0.6344

6.2
6.3
7.7

0.08210
0.08230
0.08086

4.8
5.2
4.7

0.78
0.82
0.61

532
86
521
78
488 134

513
512
499

25
25
30

509
510
501

24
25
23

5
2
3

BCMC12-3B L 078
BCMC12-3B L 079

1/13/2014
130
39
11:59:08
12.5 PM
0.30 (Run:
5568
1)
1/14/2014
135
49
12:00:50
12.8 AM
0.36 (Run:
52840
1)

0.05794
0.05538

4.4
4.3

0.6572
0.6152

6.4
6.9

0.08226
0.08056

4.7
5.3

0.73
0.77

528
428

96
97

513
487

26
27

510
499

23
26

4
17

BCMC12-3B L 080
BCMC12-3B L 081
BCMC12-3B L 082

1/14/2014
353
341
12:02:32
266.0 AM
0.97 (Run:
9590
1)
1/14/2014
253
126
12:07:52
57.1 AM
0.50 (Run:
9124
1)
1/14/2014
116
41
12:09:33
10.9 AM
0.35 (Run:792
1)

0.18651
0.07591
0.05763

1.3
2.3
4.9

13.0430
1.8886
0.6321

4.6
5.9
7.5

0.50720
0.18043
0.07954

4.5
5.4
5.7

0.96
0.92
0.76

2712
21
1093
46
516 107

2683
1077
497

44
39
29

2645
1069
493

97
53
27

3
2
5

BCMC12-3B L 083
BCMC12-3B L 084
BCMC12-3B L 085

1/14/2014
189
107
12:11:15
19.5 AM
0.57 (Run:
2843
1)
1/14/2014
105
34
12:12:57
10.2 AM
0.32 (Run:371
1)
1/14/2014
36
35
12:14:39
16.7 AM
0.98 (Run:503
1)

0.05742
0.05614
0.10719

3.2
4.1
3.0

0.6449
0.6369
4.7561

6.0
7.3
5.4

0.08146
0.08228
0.32182

5.1
6.0
4.5

0.85
0.83
0.84

508
458
1752

70
91
54

505
500
1777

24
29
46

505
510
1799

25
30
71

1
12
3

BCMC12-3B L 086
BCMC12-3B L 087

1/14/2014
317
102
12:16:21
30.4 AM
0.32 (Run:
2729
1)
1/14/2014
145
39
12:18:03
55.4 AM
0.27 (Run:
8955
1)

0.05688
0.10783

3.0
1.9

0.6357
4.7147

5.9
5.1

0.08106
0.31711

5.1
4.7

0.86
0.93

487
1763

66
35

500
1770

23
42

502
1776

25
73

3
1

BCMC12-3B L 088
BCMC12-3B L 089
BCMC12-3B L 090

1/14/2014
39
21
12:19:45
10.9 AM
0.55 (Run:870
1)
1/14/2014
134
89
12:21:26
14.5 AM
0.66 (Run:
2778
1)
1/14/2014
294
78
12:23:08
28.2 AM
0.27 (Run:
21697
1)

0.07939
0.05906
0.05753

4.7
4.2
2.8

2.3938
0.6726
0.6560

7.2
6.7
6.2

0.21870
0.08260
0.08270

5.5
5.2
5.5

0.76
0.78
0.89

1182
569
512

93
92
62

1241
522
512

52
27
25

1275
512
512

63
26
27

9
11
0

BCMC12-3B L 091
BCMC12-3B L 092
BCMC12-3B L 093

1/14/2014
115
54
12:31:51
43.2 AM
0.47 (Run:
2999
1)
1/14/2014
118
41
12:33:33
11.4 AM
0.35 (Run:804
1)
1/14/2014
131
79
12:35:15
13.9 AM
0.61 (Run:960
1)

0.10029
0.05720
0.05755

2.9
5.4
4.7

4.0958
0.6425
0.6567

5.6
7.8
6.6

0.29619
0.08147
0.08276

4.8
5.6
4.7

0.86
0.72
0.71

1629
53
499 119
513 102

1653
504
513

45
31
27

1672
505
513

70
27
23

3
1
0

BCMC12-3B L 094
BCMC12-3B L 095
BCMC12-3B L 096

1/14/2014
97
73
12:36:57
10.7 AM
0.76 (Run:325
1)
1/14/2014
90
47
12:38:39
9.3 AM
0.52 (Run:
2025
1)
1/14/2014
139
51
12:40:21
13.7 AM
0.36 (Run:722
1)

0.05935
0.05611
0.05553

4.1
5.8
3.9

0.6747
0.6439
0.6288

6.3
7.6
6.9

0.08246
0.08323
0.08212

4.8
4.9
5.7

0.76
0.64
0.82

580
89
457 129
434
88

524
505
495

26
30
27

511
515
509

24
24
28

12
13
18

BCMC12-3B L 097
BCMC12-3B L 098

1/14/2014
132
53
12:42:02
13.4 AM
0.40 (Run:
1953
1)
1/14/2014
82
51
12:43:44
26.4 AM
0.62 (Run:
1390
1)

0.05529
0.08797

4.5
3.3

0.6451
2.9650

7.1
5.4

0.08461
0.24444

5.5
4.2

0.78
0.79

424
1382

99
64

505
1399

28
41

524
1410

28
54

24
2

BCMC12-3B L 099
BCMC12-3B L 100
BCMC12-3B L 101

1/14/2014
160
83
12:45:26
16.4 AM
0.52 (Run:817
1)
1/14/2014
223
39
12:47:08
20.5 AM
0.17 (Run:
1313
1)
1/14/2014
85
20
12:52:28
31.0 AM
0.23 (Run:
2337
1)

0.06122
0.05874
0.10470

3.5
3.7
2.9

0.6817
0.6598
4.4500

6.8
6.5
6.3

0.08077
0.08146
0.30826

5.8
5.4
5.5

0.85
0.82
0.88

647
558
1709

76
81
54

528
514
1722

28
26
52

501
505
1732

28
26
84

23
10
2

BCMC12-3B L 102
BCMC12-3B L 104
BCMC12-3B L 105

1/14/2014
63
24
12:54:10
6.3 AM
0.39 (Run:146
1)
1/14/2014
125
65
12:57:34
100.7 AM
0.52 (Run:
32573
1)
1/14/2014
247
64
12:59:16
23.5 AM
0.26 (Run:
3986
1)

0.05956
0.22582
0.05738

5.5
1.7
3.2

0.6726
17.8983
0.6558

7.8
5.7
6.5

0.08190
0.57485
0.08289

5.4
5.4
5.7

0.70
0.96
0.87

588 120
3023
27
506
71

522
2984
512

32
55
26

507
27
2928 128
513
28

14
4
1

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L

106
107
108
109
110

1/14/2014
343
113
1:00:58
30.5
1/14/2014
40
23
1:02:39
27.6
1/14/2014
42
24
1:04:21
18.0
1/14/2014
153
140
1:06:03
17.2
1/14/2014
60
17
1:07:45
20.4

AM
0.33(Run:5600
1)
AM
0.57(Run: 705
1)
AM
0.58(Run:2261
1)
AM
0.92(Run: 433
1)
AM
0.28(Run:6150
1)

0.06026
0.18364
0.11528
0.05704
0.10260

2.3
1.7
3.1
4.0
3.5

0.6277
12.9154
5.2021
0.6552
4.0613

6.2
5.3
6.8
6.6
7.9

0.07556
0.51009
0.32727
0.08330
0.28709

5.8
5.0
6.0
5.2
7.1

0.93
0.94
0.89
0.80
0.90

613
2686
1884
493
1672

50
29
56
87
65

495
2674
1853
512
1647

24
50
58
26
65

470
26
2657 109
1825
96
516
26
1627 102

24
1
4
5
3

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L

111
112
113
114

1/14/2014
125
48
1:16:28
48.7
1/14/2014
212
69
1:18:10
19.8
1/14/2014
117
103
1:19:52
38.3
1/14/2014
82
126
1:21:33
41.7

AM
0.38(Run:1752
1)
AM
0.32(Run: 407
1)
AM
0.88(Run:2947
1)
AM
1.55(Run:3707
1)

0.10933
0.05661
0.08923
0.11548

1.4
3.5
2.6
2.1

4.8445
0.6313
3.0221
5.3629

5.4
6.3
6.2
5.2

0.32137
0.08089
0.24564
0.33680

5.2
5.2
5.6
4.8

0.96
0.83
0.91
0.92

1788
476
1409
1887

26
77
49
37

1793
497
1413
1879

46
25
47
45

1796
501
1416
1871

82
25
71
78

1
5
1
1

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L
L

115
116
117
118
119
120

1/14/2014
39
23
1:23:15
12.6
1/14/2014
347
140
1:24:57
80.1
1/14/2014
322
201
1:26:39
93.7
1/14/2014
172
186
1:28:21
18.9
1/14/2014
136
90
1:30:03
14.3
1/14/2014
113
57
1:31:45
11.3

AM
0.60(Run:1036
1)
AM
0.40(Run:7128
1)
AM
0.63(Run:2376
1)
AM
1.08(Run:2066
1)
AM
0.66(Run:2133
1)
AM
0.50(Run:2145
1)

0.09322
0.07767
0.08641
0.05770
0.05801
0.05736

4.9
1.3
1.4
4.1
3.5
4.3

3.2487
2.0661
2.7436
0.6358
0.6792
0.6606

7.3
5.0
4.4
6.2
6.2
6.6

0.25276
0.19294
0.23029
0.07991
0.08492
0.08353

5.4
4.9
4.2
4.6
5.1
5.0

0.74
0.97
0.95
0.75
0.82
0.76

1492
1138
1347
519
530
505

92
26
26
91
77
94

1469
1138
1340
500
526
515

56
34
33
25
25
27

1453
1137
1336
496
525
517

70
51
51
22
26
25

3
0
1
5
1
2

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L

121
122
123
124
125

1/14/2014
159
91
1:37:05
16.2
1/14/2014
120
73
1:38:47
12.2
1/14/2014
87
87
1:40:29
64.0
1/14/2014
217
80
1:42:11
21.0
1/14/2014
110
53
1:43:53
10.7

AM
0.57(Run:1033
1)
AM
0.60(Run:1334
1)
AM
0.99(Run:2366
1)
AM
0.37(Run:2481
1)
AM
0.48(Run:1633
1)

0.05608
0.05906
0.18788
0.05725
0.05871

4.1
4.5
2.0
2.7
4.4

0.6401
0.6704
13.0872
0.6469
0.6413

6.5
6.9
5.5
6.4
6.7

0.08279
0.08233
0.50521
0.08195
0.07922

5.0
5.3
5.1
5.8
5.0

0.77
0.76
0.93
0.90
0.75

455
569
2724
501
557

92
97
33
60
97

502
521
2686
507
503

26
28
52
25
26

513
25
510
26
2636 111
508
28
491
23

13
11
4
1
12

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L
L

126
127
128
129
130
131

1/14/2014
210
80
1:45:34
20.3
1/14/2014
106
39
1:47:16
10.2
1/14/2014
75
23
1:48:58
7.0
1/14/2014
168
58
1:50:40
16.2
1/14/2014
103
43
1:52:22
10.3
1/14/2014
71
19
2:01:07
14.1

AM
0.38(Run:4656
1)
AM
0.37(Run:1084
1)
AM
0.31(Run:2649
1)
AM
0.35(Run: 479
1)
AM
0.41(Run: 330
1)
AM
0.26(Run: 909
1)

0.05728
0.06134
0.06020
0.05673
0.06044
0.07659

3.4
5.6
6.3
5.1
6.0
3.8

0.6493
0.6839
0.6480
0.6371
0.6854
1.8005

6.0
7.7
8.6
7.7
8.2
6.5

0.08221
0.08086
0.07807
0.08144
0.08225
0.17049

4.9
5.2
5.9
5.7
5.6
5.2

0.82
0.68
0.68
0.75
0.69
0.81

502
651
611
481
619
1111

75
121
136
113
129
76

508
529
507
500
530
1046

24
32
34
30
34
42

509
501
485
505
510
1015

24
25
27
28
28
49

1
24
21
5
18
9

1/14/2014
71
35
2:04:30
7.2 AM
0.49(Run: 182
1)
1/14/2014
69
83
2:06:12
57.2 AM
1.20(Run:1339
1)
1/14/2014
282
206
2:09:36
127.3 AM
0.73(Run:3017
1)

0.05958
0.19091
0.11198

6.4
2.3
2.0

0.6615
13.5518
5.0515

8.4
6.1
5.1

0.08053
0.51483
0.32717

5.5
5.7
4.7

0.65
0.93
0.92

588 140
2750
37
1832
37

516
2719
1828

34
58
43

499
26
2677 125
1825
75

16
3
0

BCMC12-3B L 133
BCMC12-3B L 134
BCMC12-3B L 136

Appendix C: LA-ICPMS U-Pb isotope ratios and ages for zircons - continued.

Analysis

U

Th

Pb*

ppm

ppm

ppm

Th/U

206Pb
204Pb

Corrected isotope ratios
207Pb* ±2σ
207Pb* ±2σ
206Pb* ±2σ
206Pb* (%)
235U* (%)
238U (%)

error
corr.

Apparent ages (Ma)
207Pb* ±2σ 207Pb* ±2σ 206Pb* ±2σ
206Pb* (Ma)
235U (Ma) 238U* (Ma)

BCMC12-3B L 147
BCMC12-3B L 148

1/14/2014
114
40
2:31:55
11.3 AM
0.35(Run: 593
1)
1/14/2014
235
103
2:33:36
89.4 AM
0.44(Run:5251
1)

0.05654
0.10590

5.5
2.3

0.6439
4.3833

7.9
5.1

0.08259
0.30019

5.6
4.5

0.71
0.89

474 122
1730
42

505
1709

31
42

512
1692

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L

149
150
151
152
153

1/14/2014
87
69
2:35:18
21.3
1/14/2014
177
44
2:36:59
17.0
1/14/2014
181
27
2:45:43
66.7
1/14/2014
365
108
2:47:24
35.6
1/14/2014
186
51
2:49:07
17.1

AM
0.80(Run:1537
1)
AM
0.25(Run: 618
1)
AM
0.15(Run:
19204
1)
AM
0.29(Run:
12412
1)
AM
0.27(Run:1227
1)

0.07592
0.05979
0.10363
0.05837
0.05894

4.1
3.5
2.7
2.8
4.0

1.8541
0.6813
4.5537
0.6726
0.6423

6.6
6.2
8.7
6.2
6.4

0.17713
0.08264
0.31871
0.08358
0.07903

5.1
5.1
8.2
5.5
5.0

0.78
0.82
0.95
0.89
0.78

1093
596
1690
544
565

83
76
50
61
87

1065
528
1741
522
504

43
25
72
25
25

1051
49
512
25
1783 128
517
27
490
24

4
15
6
5
14

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L
L

154
155
156
157
158
159

1/14/2014
211
146
2:50:49
48.2
1/14/2014
120
114
2:52:30
101.1
1/14/2014
79
90
2:54:12
66.3
1/14/2014
118
50
2:55:54
46.2
1/14/2014
89
39
2:57:36
8.7
1/14/2014
78
55
2:59:17
8.4

AM
0.69(Run:1349
1)
AM
0.95(Run:2157
1)
AM
1.14(Run:3379
1)
AM
0.42(Run: 837
1)
AM
0.43(Run:1040
1)
AM
0.70(Run:
13528
1)

0.07556
0.20248
0.19443
0.10946
0.05954
0.05806

3.5
1.3
1.8
1.8
6.4
6.1

1.7947
15.6666
14.5118
4.7472
0.6628
0.6684

6.7
6.0
5.7
5.6
8.4
8.2

0.17227
0.56117
0.54133
0.31456
0.08074
0.08350

5.7
5.9
5.4
5.4
5.4
5.4

0.85
0.97
0.95
0.95
0.64
0.67

1083
71
2846
22
2780
29
1790
33
587 140
532 134

1044
2857
2784
1776
516
520

44
58
54
47
34
33

1025
54
2871 137
2789 123
1763
83
501
26
517
27

6
1
0
2
15
3

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L

161
162
163
164

1/14/2014
468
200
3:06:21
46.2
1/14/2014
153
519
3:08:02
163.7
1/14/2014
209
91
3:09:44
20.4
1/14/2014
45
26
3:11:26
4.5

AM
0.43(Run:
43256
1)
AM
3.40(Run:
24765
1)
AM
0.44(Run:4703
1)
AM
0.59(Run: 666
1)

0.05928
0.18786
0.06037
0.05996

3.3
1.6
2.8
7.0

0.6779
13.4260
0.6837
0.6738

6.2
6.0
6.1
9.1

0.08295
0.51832
0.08213
0.08150

5.2
5.8
5.5
5.9

0.84
0.97
0.89
0.64

577
73
2724
26
617
60
602 151

526
2710
529
523

25
56
25
37

514
26
2692 127
509
27
505
29

11
1
18
17

BCMC12-3B L 165
BCMC12-3B L 166
BCMC12-3B L 167

1/14/2014
66
45
3:13:08
26.0 AM
0.69(Run:3302
1)
1/14/2014
93
60
3:14:50
9.9 AM
0.65(Run: 375
1)
1/14/2014
37
20
3:16:31
3.7 AM
0.55(Run: 140
1)

0.11384
0.05788
0.05810

2.0
5.1
8.5

4.7957 9.4
0.6799 7.5
0.6655 10.4

0.30554
0.08521
0.08307

9.2
5.4
5.9

0.98
0.72
0.57

1862
35
525 113
533 186

1784
527
518

79
31
42

1719 139
527
27
514
29

9
0
4

BCMC12-3B L 168
BCMC12-3B L 169

1/14/2014
31
24
3:18:12
12.2 AM
0.77(Run: 664
1)
1/14/2014
80
61
3:19:54
8.2 AM
0.77(Run: 398
1)

0.10399
0.05874

4.0
5.4

4.3639
0.6525

6.9
7.1

0.30435
0.08057

5.6
4.6

0.81
0.65

1697
74
557 119

1706
510

57
29

1713
499

85
22

1
11

BCMC12-3B L 170
BCMC12-3B L 171
BCMC12-3B L 172

1/14/2014
103
59
3:21:37
10.5 AM
0.57(Run:5132
1)
1/14/2014
49
56
3:30:21
23.3 AM
1.14(Run:7383
1)
1/14/2014
74
50
3:32:03
7.4 AM
0.68(Run: 198
1)

0.05629
0.11975
0.05834

5.2
3.0
5.9

0.6522
5.5081
0.6268

7.9
6.3
7.8

0.08402
0.33361
0.07792

6.0
5.6
5.1

0.75
0.88
0.65

464 115
1952
54
543 128

510
1902
494

32
55
30

520
1856
484

30
90
24

13
6
11

BCMC12-3B L 173
BCMC12-3B L 174
BCMC12-3B L 175

1/14/2014
39
26
3:33:44
4.1 AM
0.66(Run: 291
1)
1/14/2014
63
41
3:35:26
23.2 AM
0.65(Run: 483
1)
1/14/2014
29
16
3:37:08
3.0 AM
0.55(Run: 196
1)

0.05864
0.09835
0.05649

7.4
2.5
9.7

0.6611 9.6
3.8327 6.6
0.6332 11.3

0.08177
0.28265
0.08130

6.1
6.1
5.8

0.64
0.92
0.51

554 162
1593
47
472 214

515
1600
498

39
53
44

507
1605
504

30
86
28

9
1
7

BCMC12-3B L 176
BCMC12-3B L 177

1/14/2014
319
157
3:38:50
31.4 AM
0.49(Run:2603
1)
1/14/2014
185
141
3:40:32
19.6 AM
0.76(Run: 832
1)

0.05715
0.06066

2.9
3.0

0.6371
0.6694

5.6
5.8

0.08085
0.08004

4.8
5.0

0.85
0.86

497
627

64
64

501
520

22
24

501
496

23
24

1
22

BCMC12-3B L 178
BCMC12-3B L 179
BCMC12-3B L 180

1/14/2014
72
26
3:42:14
6.8 AM
0.35(Run: 508
1)
1/14/2014
313
123
3:43:55
65.5 AM
0.39(Run:5010
1)
1/14/2014
37
16
3:45:37
23.9 AM
0.45(Run: 913
1)

0.05722
0.07449
0.18197

4.4
2.3
3.6

0.6270
1.7746
12.2356

7.7
5.9
6.4

0.07947
0.17277
0.48767

6.3
5.4
5.2

0.82
0.92
0.82

500
1055
2671

98
47
59

494
1036
2623

30
38
60

493
30
1027
52
2561 111

BCMC12-3B L 181
BCMC12-3B L 182
BCMC12-3B L 183

1/14/2014
192
79
3:50:59
42.4 AM
0.41(Run:1663
1)
1/14/2014
27
34
3:52:41
7.4 AM
1.26(Run:2787
1)
1/14/2014
226
75
3:54:23
47.2 AM
0.33(Run:1076
1)

0.07500
0.07796
0.07338

2.5
5.2
2.4

1.8657
1.8729
1.7525

5.8
7.4
5.4

0.18043
0.17425
0.17323

5.3
5.2
4.9

0.90
0.70
0.90

1068
50
1146 104
1024
49

1069
1072
1028

39
49
35

1069
1035
1030

52
50
46

0
10
1

BCMC12-3B L 184
BCMC12-3B L 185
BCMC12-3B L 186

1/14/2014
30
15
3:56:05
3.1 AM
0.48(Run: 266
1)
1/14/2014
239
121
3:57:47
72.4 AM
0.51(Run:6785
1)
1/14/2014
43
24
3:59:28
4.5 AM
0.55(Run: 453
1)

0.05975
0.08923
0.05538

9.1
1.9
8.4

0.6631 10.7
2.9042 5.6
0.6207 10.3

0.08049
0.23606
0.08128

5.6
5.3
5.9

0.53
0.94
0.58

595 197
1409
36
428 188

517
1383
490

43
43
40

499
1366
504

27
66
29

17
3
18

BCMC12-3B L 187
BCMC12-3B L 188

1/14/2014
47
61
4:01:10
24.7 AM
1.29(Run:5588
1)
1/14/2014
326
133
4:02:52
31.8 AM
0.41(Run: 489
1)

0.11858
0.05687

2.6
2.8

5.3592
0.6268

6.0
6.1

0.32779
0.07993

5.4
5.5

0.90
0.89

1935
486

46
61

1878
494

51
24

1828
496

86
26

6
2

BCMC12-3B L 191
BCMC12-3B L 192
BCMC12-3B L 193

1/14/2014
121
48
4:15:02
47.1 AM
0.39(Run:2497
1)
1/14/2014
329
124
4:16:44
32.5 AM
0.38(Run:5022
1)
1/14/2014
156
81
4:18:25
47.8 AM
0.52(Run:
72251
1)

0.11240
0.05614
0.08874

2.3
2.9
2.5

4.8114
0.6359
2.9360

5.5
5.5
5.6

0.31047
0.08215
0.23996

5.0
4.6
5.0

0.91
0.84
0.90

1839
458
1399

41
65
48

1787
500
1391

47
22
43

1743
509
1386

77
23
63

6
12
1

BCMC12-3B L 194
BCMC12-3B L 195
BCMC12-3B L 196

1/14/2014
136
43
4:20:07
13.2 AM
0.32(Run:1108
1)
1/14/2014
142
63
4:21:49
32.0 AM
0.44(Run:
11907
1)
1/14/2014
342
73
4:23:31
33.0 AM
0.21(Run:
110117
1)

0.05865
0.07666
0.05724

4.2
2.4
2.9

0.6667
1.9063
0.6667

6.2
5.2
6.4

0.08245
0.18035
0.08447

4.5
4.6
5.7

0.73
0.89
0.89

554
1112
501

92
48
64

519
1083
519

25
35
26

511
1069
523

22
46
28

8
4
5

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L

197
198
199
200
201

1/14/2014
183
53
4:25:12
39.7
1/14/2014
243
105
4:26:54
23.7
1/14/2014
174
73
4:28:36
16.9
1/14/2014
136
106
4:30:18
32.8
1/14/2014
151
54
4:35:40
14.3

AM
0.29(Run:2116
1)
AM
0.43(Run:7021
1)
AM
0.42(Run:4236
1)
AM
0.78(Run: 929
1)
AM
0.36(Run:4096
1)

0.07737
0.05792
0.05778
0.07542
0.05970

2.3
3.5
4.6
3.7
3.3

1.9404
0.6326
0.6366
1.8119
0.6519

5.2
6.2
6.8
6.6
6.4

0.18189
0.07922
0.07991
0.17424
0.07920

4.6
5.1
5.0
5.5
5.5

0.89
0.83
0.73
0.83
0.85

1131
46
527
77
521 102
1080
73
593
73

1095
498
500
1050
510

35
24
27
43
26

1077
491
496
1035
491

46
24
24
53
26

5
7
5
4
18

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L

205
206
207
208

1/14/2014
87
27
4:42:28
31.5
1/14/2014
180
61
4:44:10
17.0
1/14/2014
227
107
4:45:52
45.3
1/14/2014
87
54
4:47:34
8.9

AM
0.31(Run:1083
1)
AM
0.34(Run: 972
1)
AM
0.47(Run:3122
1)
AM
0.62(Run: 814
1)

0.10638
0.05764
0.07151
0.05581

2.8
3.8
3.1
6.4

4.4261
0.6391
1.6198
0.6230

5.5
6.5
5.8
8.6

0.30176
0.08042
0.16427
0.08096

4.7
5.3
4.9
5.8

0.86
0.81
0.84
0.67

1738
52
516
84
972
64
445 142

1717
502
978
492

46
26
37
34

1700
499
980
502

71
25
45
28

3
4
1
13

1/14/2014
162
109
4:49:15
177.9 AM
0.67(Run:
50257
1)

0.32075

1.5

32.4656

5.7

0.73409

5.5

0.97

3573

3565

56

3549 150

BCMC12-3B L 209

22

28
67

%
disc.
8
2

1
3
5

1

Appendix D: LA-ICPMS trace element concentrations (ppm) in zircon.
P

Analysis

Ti

Y

Nb

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

Th

U

51.4
54.2

208.7
221.7

48.7
51.1

477.4
491.0

55.6
58.4

7620
7844

6.82
6.92

125
172

163
192

Florida Mountain Granite (sample 08FM-10 of Amato and Mack, 2012; N32°08.929' W107°39.163')
08FM-10DH 22
08FM-10DH 23

233
236

8.90
9.42

1394
1406

3.46
3.35

7.73
8.06

0.64
0.69

39.2
38.8

12.8
14.4

147.9
157.3

08FM-10DH 25

171

7.61

2392

8.0

08FM-10DH 26
08FM-10DH 28

179
206

8.90
7.82

2591
1392

8.6
18.3

0.38

9.42

16.28

1.40

81.6

25.2

269.8

90.1

360.0

74.6

659.1

85.5

8780

3.61

105

127

0.55
0.16

10.45
3.51

18.75
6.19

1.72
0.34

87.8
36.5

27.5
13.1

295.8
149.3

100.2
53.2

378.8
216.5

79.1
46.8

705.3
443.0

92.2
59.2

8903
9847

3.72
6.94

119
119

08FM-10DH 29

150

8.31

817

136
153

8.1

0.06

1.14

3.47

0.48

20.5

7.3

83.8

30.2

128.9

28.7

271.4

39.4

9037

3.43

37

08FM-10DH 31
08FM-10DH 32

166
173

9.52
6.95

1291
1025

59

9.3
11.9

10.7
10.7

0.14
0.06

4.08
1.34

6.79
4.11

0.89
0.41

36.7
24.2

12.4
8.9

138.5
104.0

49.9
39.2

196.9
159.8

41.5
34.6

386.0
317.4

57.4
48.0

9168
9968

4.09
6.02

64
47

86
70

08FM-10DH 33

194

9.50

08FM-10DH 34
08FM-10DH 36

213
161

9.86
6.38

1193

9.3

11.2

0.11

2.76

6.70

0.61

33.2

10.9

126.5

44.5

182.3

40.5

356.9

55.1

9110

4.08

84

105

1249
1143

9.1
16.8

11.4
14.6

0.10
0.04

2.31
1.60

5.98
5.63

0.49
0.37

33.8
28.1

10.8
10.7

130.6
121.8

47.7
45.0

193.7
179.1

41.5
40.8

380.3
374.0

58.1
9152
53.2 10699

4.22
7.23

105
81

08FM-10DH 37

177

117
127

8.49

2823

9.2

15.5

0.60

11.84

21.36

2.10

92.8

29.3

329.6

112.6

431.6

86.8

761.2

9451

4.24

138

08FM-10DH 38
08FM-10DH 39

150

151
170

8.30
5.98

1055
1290

11.1
19.9

12.1
14.9

0.04
0.13

1.60
1.76

5.41
4.74

0.45
0.29

30.5
32.2

9.2
11.2

115.6
134.0

40.8
47.9

168.5
204.2

36.6
43.7

337.7
391.8

50.5
9776
60.1 10789

4.75
7.73

60
81

93
131

08FM-10DH 42
08FM-10DH 44

196
137

8.09
8.33

1996
814

11.5
7.2

15.7
8.7

0.32
0.07

6.50
2.25

13.38
4.69

1.00
0.56

63.0
26.3

20.7
7.8

228.1
93.1

77.5
32.3

297.1
125.2

65.8
28.4

596.2
285.6

78.0
35.5

8503
7534

4.71
2.95

127
36

152
61

08FM-10DH 46

213

8.23

1082

13.7

15.1

0.07

2.70

5.47

0.44

30.4

9.9

120.1

44.0

168.3

38.1

382.4

46.4

7756

5.48

105

151

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

49
50
51
53

177
208
186
170

9.00
7.27
7.43
8.19

1977
1894
2208
1697

6.3
12.8
9.4
6.5

0.09
0.06
0.08

12.3
16.9
15.0
11.6

0.66
0.48
0.58
0.37

10.24
8.04
10.41
6.79

16.82
12.54
16.67
13.48

2.08
1.07
1.43
1.31

67.7
59.5
73.7
59.3

20.8
19.4
24.6
18.2

234.0
221.3
254.8
207.6

79.2
74.5
87.9
66.5

300.6
282.0
337.9
252.6

66.0
63.4
73.7
55.8

628.0
603.6
692.6
549.7

69.3
68.1
78.0
60.7

7133
7231
7219
7139

3.43
5.57
4.74
2.96

88
121
117
70

121
175
168
100

08FM-10DH 54
08FM-10DH 55
08FM-10DH 56

151
180
167

8.12
8.75
9.04

1747
1434
1905

5.8
6.1
6.5

0.04
0.02
0.03

11.2
9.2
10.7

0.35
0.30
0.47

7.34
6.01
8.48

16.33
11.59
14.62

1.55
1.28
1.31

63.4
48.0
67.7

19.5
15.1
19.9

219.7
167.8
219.5

71.0
54.3
76.8

266.0
211.7
285.0

57.6
48.3
59.9

567.0
446.8
566.8

64.3
51.8
72.4

7356
7386
8127

2.90
2.90
3.56

73
56
81

101
78
104

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

57
58
64
70

204
228
231
217

8.88
8.84
8.88
8.33

1384
2103
1594
2958

14.3
13.2
15.6
11.4

0.07

15.9
17.2
16.6
16.0

0.16
0.34
0.16
0.61

3.29
6.88
3.62
10.36

8.36
13.11
8.22
16.99

0.59
1.00
0.64
1.72

36.7
64.0
40.4
94.4

12.3
20.6
14.4
30.2

147.6
227.1
168.5
344.5

53.8
80.0
59.0
118.3

214.9
319.7
245.4
451.1

47.4
69.1
54.5
89.1

454.0
616.8
481.2
810.0

61.4
82.1
72.0
115.5

9018
8740
9824
9131

5.69
5.60
6.37
4.91

122
167
140
155

148
181
154
165

08FM-10DH 72
08FM-10DH 73
08FM-10DH 77

173
155
205

8.62
8.07
8.96

1054
1068
1859

8.2
9.6
11.9

0.00

9.8
11.0
14.7

0.08
0.08
0.29

2.25
1.54
5.62

5.47
5.27
11.50

0.52
0.49
1.10

25.7
27.2
58.8

9.8
10.0
18.4

112.6
116.5
201.6

41.0
41.8
72.5

166.4
166.3
294.1

36.1
37.2
62.2

339.8
337.2
545.2

50.8 10147
51.5
9927
82.1
9746

3.96
4.79
5.41

53
63
129

69
83
148

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

201
234
178
175

9.53
9.14
8.70
8.05

1047
2171
980
1776

8.5
11.4
8.0
7.5

10.0
15.3
8.3
11.9

0.09
0.52
0.14
0.39

2.27
8.92
2.77
8.55

4.15
15.27
6.03
15.10

0.70
1.42
0.73
1.45

29.9
71.3
31.1
63.3

9.8
22.0
10.4
19.6

110.1
247.8
115.8
221.4

39.7
85.8
38.3
70.7

158.9
338.8
151.1
269.4

36.2
71.8
36.5
60.1

336.6
667.0
364.7
582.0

48.0
80.3
39.5
64.5

9153
7412
6706
7128

3.87
4.85
3.65
3.21

63
143
48
80

90
179
78
113

79
84
85
87

18.8
18.1

18.4
18.4

0.21
0.17

0.05

14.0

0.02

14.9
18.4

7.4

0.02

0.03

0.02

0.03

105.5

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.762' W104°50.345' ±19ft)
BCMC12-3A L 001

1/13/2014
284 10.84
6:05:54
1478
PM

(Run:
8.2 1) 0.01

16.8

0.34

6.52

9.55

0.59

41.2

13.8

158.3

56.9

222.7

51.0

485.6

68.0

7502

6.02

239

341

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

002
003
004
005

1/13/2014
196
4.71
6:07:37
2014
PM
1/13/2014
163 21.73
6:09:19995
PM
1/13/2014
173
8.96
6:11:01796
PM
1/13/2014
151
6.05
6:12:43
1875
PM

(Run:
19.2
(Run:
2.2
(Run:
5.6
(Run:
4.3

1)
1)
1)
1) 0.04

32.6
7.0
9.9
18.1

0.22
0.30
0.04
0.56

4.49
5.35
2.02
10.75

8.35
9.26
2.87
17.94

0.98
1.52
0.34
1.08

46.9
35.4
17.8
69.7

17.0
10.4
6.9
21.3

211.8
113.5
77.2
227.0

77.5
38.4
30.0
76.3

309.3
145.1
122.3
283.0

67.0
33.0
29.9
61.6

579.1
308.2
303.0
568.6

77.6
42.1
42.2
70.4

8638
9314
9250
7947

7.00
1.06
2.86
2.28

129
55
34
67

234
103
93
123

BCMC12-3A L 006
BCMC12-3A L 009
BCMC12-3A L 010

1/13/2014
198 10.01
6:14:25663
PM
1/13/2014
236
8.51
6:19:31708
PM
1/13/2014
122
4.11
6:21:13439
PM

(Run:
4.6 1)
(Run:
6.2 1) 0.01
(Run:
0.4 1)

7.9
20.4
3.1

0.03
0.11
0.02

0.73
1.71
0.33

2.39
3.92
1.94

0.06
0.22
0.45

14.0
21.4
7.4

5.0
6.4
2.6

67.0
76.8
36.4

25.3
25.6
15.1

107.2
97.2
65.9

27.0
25.6
20.3

280.5
270.5
261.2

35.7
31.4
37.0

9407
8846
7944

1.86
2.87
0.23

39
86
7

104
184
60

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L

011
012
014
016

1/13/2014
173
5.78
6:26:31790
PM
1/13/2014
162
5.05
6:28:13790
PM
1/13/2014
162
3.69
6:31:37650
PM
1/13/2014
180
6.86
6:35:01
1066
PM

(Run:
15.9
(Run:
10.0
(Run:
1.2
(Run:
13.6

1)
1)
1)
1) 0.01

16.5
19.6
15.3
40.7

0.04
0.09
0.08
0.22

1.44
1.93
0.87
3.75

3.60
4.38
3.27
6.93

0.32
0.55
0.59
1.75

18.0
19.5
14.6
25.8

6.7
7.1
5.3
9.9

84.7
86.0
62.1
120.4

31.1
30.6
23.0
41.7

130.3
123.5
98.9
169.1

34.4
32.2
26.2
42.8

376.4
338.4
308.0
445.8

42.0
35.5
36.0
45.8

8074
6232
7789
5104

6.58
4.25
0.47
4.98

49
59
63
81

161
210
67
170

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L

017
018
019
020

1/13/2014
278
4.17
6:36:42675
PM
1/13/2014
60
3.92
6:38:25569
PM
1/13/2014
179
9.88
6:40:07
2949
PM
1/13/2014
214 12.13
6:41:48
1102
PM

(Run:
2.1
(Run:
0.7
(Run:
10.7
(Run:
6.6

1)
1)
1) 0.16
1) 0.01

12.1
3.6
19.2
12.7

0.02
0.97
0.21

0.67
0.52
14.39
4.42

2.37
1.94
24.06
7.71

0.30
0.18
1.56
0.51

14.4
10.7
103.7
33.8

4.7
4.1
32.1
10.7

62.9
59.7
351.9
128.8

22.6
22.2
117.6
43.4

99.0
99.2
446.9
164.6

27.6
25.1
102.1
41.8

313.3
265.2
981.2
425.7

37.5
29.6
108.6
49.3

8998
7097
6027
6176

1.41
0.44
4.31
4.02

100
7
107
64

96
31
188
173

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

021
022
024
025
026
029
030
031
032
033
034
035
036
037
038
040
041
042
043
045
046
047
048
049
052
053
054
055
057

1/13/2014
145
4.92
6:50:30
1359
PM
1/13/2014
172 12.43
6:52:12
1250
PM
1/13/2014
125
6.19
6:55:36
1524
PM
1/13/2014
148
9.21
6:57:18963
PM
1/13/2014
272
3.33
6:59:00737
PM
1/13/2014
204 12.38
7:04:06968
PM
1/13/2014
252 14.67
7:05:47963
PM
1/13/2014
144 10.56
7:11:06907
PM
1/13/2014
161 10.88
7:12:47
2169
PM
1/13/2014
240
2.56
7:14:29
1694
PM
1/13/2014
197
3.63
7:16:10
1094
PM
1/13/2014
132 13.19
7:17:52
2092
PM
1/13/2014
277 11.47
7:19:34
1117
PM
1/13/2014
114 17.40
7:21:16493
PM
1/13/2014
417
3.12
7:22:58
1145
PM
1/13/2014
147
7.43
7:26:22
1558
PM
1/13/2014
163 11.85
7:35:04369
PM
1/13/2014
246 15.63
7:36:46409
PM
1/13/2014
151
8.55
7:38:28590
PM
1/13/2014
280
7.37
7:41:51780
PM
1/13/2014
182
4.59
7:43:33
2564
PM
1/13/2014
167
3.11
7:45:15271
PM
1/13/2014
234 20.34
7:46:57773
PM
1/13/2014
337
5.32
7:48:39881
PM
1/13/2014
216 14.35
7:57:22539
PM
1/13/2014
168
2.49
7:59:04
1028
PM
1/13/2014
263 18.50
8:00:46
2019
PM
1/13/2014
211 17.47
8:02:28
1712
PM
1/13/2014
233 16.96
8:05:52669
PM

(Run:
5.3
(Run:
2.8
(Run:
4.5
(Run:
7.1
(Run:
1.6
(Run:
7.8
(Run:
9.2
(Run:
6.4
(Run:
3.3
(Run:
19.6
(Run:
1.0
(Run:
4.7
(Run:
15.5
(Run:
3.8
(Run:
5.4
(Run:
3.6
(Run:
3.2
(Run:
1.5
(Run:
3.9
(Run:
8.8
(Run:
10.5
(Run:
0.9
(Run:
11.5
(Run:
6.8
(Run:
2.1
(Run:
1.5
(Run:
13.9
(Run:
8.9
(Run:
1.8

1)
1)
1)
1)
1)
1)
1)
1)
1) 0.12
1)
1)
1) 0.12
1)
1)
1)
1)
1)
1)
1)
1)
1) 0.05
1)
1) 0.05
1)
1)
1)
1) 0.16
1) 0.09
1)

13.4
14.8
11.9
14.4
1.5
22.3
40.0
17.9
14.0
16.4
8.4
11.3
50.7
4.1
14.0
12.3
16.4
8.7
9.7
36.6
16.9
3.5
29.0
35.9
8.0
4.6
67.1
42.7
4.2

0.05
0.14
0.07
0.16
0.03
0.21
0.12
0.12
0.98
0.03
0.11
0.90
0.14
0.08
0.08
0.32
0.04
0.07
0.08
0.07
0.42
0.06
0.29
0.03
0.13
0.09
1.14
1.06
0.08

2.09
3.80
2.16
2.76
1.10
3.25
2.30
2.23
14.05
1.28
2.03
14.05
2.36
1.68
1.16
7.28
0.91
2.60
1.02
2.66
7.76
0.66
4.40
0.78
2.03
1.69
16.72
17.11
1.55

6.24
8.30
5.32
5.64
5.20
6.30
5.88
5.83
20.22
5.66
4.68
18.94
5.70
3.76
2.75
14.00
1.75
4.22
2.97
4.69
13.21
1.81
6.57
2.55
4.12
6.03
21.12
19.70
3.87

0.53
1.22
0.75
0.56
0.27
0.39
1.65
0.26
1.60
0.07
1.19
0.67
0.99
0.18
0.66
0.83
0.19
0.24
0.19
0.27
1.08
0.23
0.52
0.21
1.20
0.42
2.96
3.13
0.42

34.2
41.6
38.8
26.4
30.3
27.7
20.5
26.1
75.9
32.3
24.4
71.8
26.8
14.8
17.2
56.7
6.6
19.4
15.1
25.3
66.1
8.9
32.1
17.5
21.3
31.2
71.3
63.3
15.7

11.5
12.1
13.5
9.5
8.9
8.4
7.5
8.1
22.1
13.4
8.3
22.0
9.4
5.0
6.8
17.4
2.4
5.4
4.9
7.8
23.4
3.0
8.4
6.5
5.8
10.8
21.5
18.9
5.8

149.6
140.8
154.2
110.7
94.4
101.6
94.3
98.8
261.8
167.0
101.9
239.4
113.9
57.1
96.9
198.7
34.6
54.5
63.6
85.3
280.0
29.8
98.5
82.1
64.4
115.6
240.7
202.2
71.7

50.4
48.9
59.1
38.1
26.6
37.0
35.2
36.1
88.1
63.5
40.1
84.2
41.4
20.1
40.5
63.9
13.2
15.0
22.2
28.3
99.5
9.8
30.9
31.9
20.9
38.1
78.4
65.7
25.4

207.2
188.7
229.4
153.1
83.1
150.4
156.8
141.2
330.5
266.5
171.8
318.3
175.3
76.8
181.4
232.3
58.8
52.3
94.3
111.9
401.9
36.6
119.5
147.2
76.5
152.4
316.4
250.6
102.1

50.2
46.6
54.4
34.1
17.4
36.2
41.0
32.6
68.0
63.9
44.2
70.4
43.7
19.7
52.6
55.0
15.4
11.7
25.6
27.4
92.8
9.0
28.8
39.5
17.8
36.0
76.3
61.3
27.0

498.7
471.2
501.3
322.3
145.6
349.8
429.0
315.4
599.2
604.7
450.1
651.0
450.2
203.0
631.2
525.7
184.2
115.0
280.3
293.0
903.9
89.6
309.2
475.7
181.3
379.6
788.1
624.7
291.2

56.2
56.3
71.4
45.7
18.7
53.6
64.8
48.6
85.0
80.8
67.7
84.3
58.0
27.3
87.0
57.8
23.4
12.4
36.0
32.9
92.2
9.6
35.3
55.8
21.2
42.6
90.5
69.7
35.3

8631
8877
9648
7771
12420
10538
11348
8693
7771
12107
11275
7700
8359
6442
9669
6426
8909
10065
7541
8822
7171
8999
6042
12053
8227
8464
6938
7454
7471

2.43
1.66
1.66
2.66
1.15
3.54
4.60
3.40
1.79
6.73
0.53
3.02
7.24
1.49
3.75
1.77
1.07
0.63
1.84
3.76
6.19
0.70
3.68
2.87
1.03
0.72
8.48
4.63
0.85

47
91
55
37
82
86
177
35
69
97
74
62
85
15
77
44
57
95
27
153
116
79
42
122
19
57
138
105
25

102
165
100
68
324
119
261
58
103
234
123
108
155
35
501
92
117
157
67
122
307
418
93
325
48
126
253
173
62

L
L
L
L

Appendix D: LA-ICPMS trace element concentrations (ppm) in zircon - continued.
P

Analysis

Ti

Y

Nb

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

Th

U

BCMC12-3A L 059

1/13/2014
210
9.87
8:09:16823
PM

(Run:
5.8 1)

13.4

0.15

4.27

5.84

0.36

24.2

7.1

96.4

32.8

122.9

31.0

317.5

37.0

7348

2.62

46

137

BCMC12-3A L 060
BCMC12-3A L 061

1/13/2014
199 20.83
8:10:57
1008
PM
1/13/2014
234
5.23
8:19:40423
PM

(Run:
9.8 1)
(Run:
0.7 1)

28.9
9.1

0.08
0.06

2.94
1.47

5.58
3.99

1.39
0.61

26.9
18.0

8.9
4.7

107.5
45.1

38.0
15.3

160.6
58.9

40.9
15.0

426.3
151.9

53.4
20.8

8559
9703

3.66
0.51

67
47

102
92

BCMC12-3A L 062

1/13/2014
178 12.18
8:21:22
1915
PM

(Run:
9.4 1) 0.16

35.7

1.25

17.14

24.18

2.26

73.5

21.2

239.2

72.5

280.3

66.6

618.9

75.3

8055

4.80

132

219

BCMC12-3A L 063
BCMC12-3A L 064

1/13/2014
128
8.17
8:23:04338
PM
1/13/2014
327 24.98
8:24:45
1295
PM

(Run:
2.4 1)
(Run:
17.3 1) 0.06

6.1
56.6

0.02
0.21

0.59
4.63

1.26
8.54

0.14
1.52

6.6
36.2

2.6
12.2

33.0
141.0

12.2
48.6

52.2
203.2

14.8
49.4

152.0
507.0

22.2
73.1

9905
9111

1.51
6.32

19
94

58
128

BCMC12-3A L 065

1/13/2014
157
4.22
8:26:26
2565
PM

(Run:
8.1 1) 0.02

18.0

0.17

6.18

14.59

0.93

66.3

23.1

274.2

100.6

389.8

88.4

801.3

105.4 10376

5.05

116

256

BCMC12-3A L 066
BCMC12-3A L 067

1/13/2014
153 19.96
8:28:08865
PM
1/13/2014
139 12.65
8:29:50869
PM

(Run:
0.4 1)
(Run:
7.0 1) 0.01

2.2
12.3

0.06
0.19

2.49
4.59

4.12
6.01

1.00
0.14

26.6
27.7

8.3
8.9

96.5
95.1

34.0
35.0

132.9
140.1

30.3
31.4

300.4
290.8

15
40

35
73

BCMC12-3A L 068

1/13/2014
251
7.40
8:31:32834
PM

(Run:
1.6 1)

13.5

0.06

1.37

3.66

0.49

18.2

6.6

79.5

31.2

131.4

32.7

332.5

BCMC12-3A L 069
BCMC12-3A L 070

1/13/2014
221
9.33
8:33:14
2596
PM
1/13/2014
213 17.41
8:34:56641
PM

(Run:
8.8 1) 0.06
(Run:
2.2 1)

32.4
14.9

1.07
0.07

14.93
1.16

21.28
3.28

2.72
1.44

86.6
15.9

26.0
5.3

285.8
66.0

92.9
23.8

373.5
98.1

82.7
25.1

750.9
266.0

BCMC12-3A L0 23

1/13/2014
217 16.44
6:53:54816
PM

(Run:
1.7 1)

6.2

0.11

2.66

6.01

0.42

26.6

7.7

90.2

30.4

122.9

28.8

286.4

38.5

BCMC12-3A M 003
BCMC12-3A M 006

1/15/2014
158
5.86
6:10:06
1426
PM
1/15/2014
196 10.23
6:15:12593
PM

(Run:
0.5 1)
(Run:
1.1 1)

4.0
14.0

0.16
0.04

3.37
1.10

6.18
2.97

1.12
0.41

35.2
13.3

11.9
4.1

139.0
54.7

51.0
20.5

215.7
95.2

49.0
24.0

500.4
264.6

71.1
38.9

BCMC12-3A M 007
BCMC12-3A M 009

1/15/2014
240 11.67
6:16:54
2666
PM
1/15/2014
197 14.04
6:20:18691
PM

(Run:
1.9 1)0.04
(Run:
2.1 1)

10.9
40.4

0.25
0.10

4.52
2.28

10.44
4.55

0.43
1.14

58.5
20.1

20.9
6.5

252.1
72.5

95.2
25.8

414.8
105.7

103.8 1082.3
26.3 277.5

BCMC12-3A M 010

1/15/2014
292 16.91
6:22:00
1051
PM

(Run:
9.6 1)

40.1

0.20

3.26

7.05

1.83

27.3

9.0

108.0

39.6

173.2

45.3

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

012
013
014
015

1/15/2014
168 15.73
6:32:25642
PM
1/15/2014
419
5.52
6:34:07
1204
PM
1/15/2014
211 16.17
6:35:49576
PM
1/15/2014
125
2.03
6:37:31295
PM

(Run:
1.5
(Run:
2.8
(Run:
1.3
(Run:
4.0

8.3
11.1
23.3
8.8

0.05
0.48
0.06
0.02

1.32
4.03
1.71
0.32

3.67
4.13
4.05
0.86

0.30
0.75
0.72
0.10

18.0
25.7
14.7
5.9

5.8
9.9
4.9
2.1

69.2
119.1
57.0
28.2

24.2
44.4
20.0
10.7

97.9
194.6
91.7
48.7

25.1
48.3
23.8
13.3

BCMC12-3A M 016
BCMC12-3A M 017
BCMC12-3A M 018

1/15/2014
85
3.99
6:39:13209
PM
1/15/2014
284
7.94
6:40:55
1071
PM
1/15/2014
127 16.57
6:42:38836
PM

(Run:
0.4 1)
(Run:
1.5 1)
(Run:
0.2 1)

3.8
10.4
2.5

0.04
0.21

0.44
0.92
4.18

0.70
2.50
6.77

0.12
0.81
2.25

3.9
15.6
26.9

1.6
5.7
8.6

18.2
84.7
92.3

7.5
36.8
31.3

34.9
177.5
124.2

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

212
214
216
217

1/13/2014
247 22.34
8:40:16878
PM
1/13/2014
143 11.29
8:43:40589
PM
1/13/2014
151
7.92
8:47:03751
PM
1/13/2014
183 14.05
8:48:44613
PM

(Run:
3.6
(Run:
3.3
(Run:
7.4
(Run:
3.2

18.3
9.6
12.8
6.5

0.07
0.07
0.07
0.07

1.31
1.71
1.54
1.46

3.64
3.14
3.05
3.58

0.48
0.58
0.26
0.29

21.6
17.1
17.3
18.8

7.5
5.7
6.4
5.6

90.8
65.5
78.7
69.7

33.2
23.1
30.1
23.5

BCMC12-3A M 218
BCMC12-3A M 219
BCMC12-3A M 220

1/13/2014
227 28.07
8:50:27362
PM
1/13/2014
185 13.51
8:52:08
1424
PM
1/13/2014
356
9.95
8:53:50958
PM

(Run:
1.6 1)
(Run:
1.8 1)0.05
(Run:
0.8 1)

15.8
12.2
6.4

0.08
0.51
0.03

1.71
8.64
1.23

2.35
11.67
2.45

0.83
1.84
0.51

12.5
42.2
18.1

3.9
13.4
7.0

42.2
154.9
92.5

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

221
222
223
225

1/13/2014
149 10.63
8:55:32
1339
PM
1/13/2014
201 20.34
9:04:19292
PM
1/13/2014
121
5.58
9:06:01383
PM
1/13/2014
182
7.73
9:09:25692
PM

(Run:
3.1
(Run:
0.5
(Run:
1.7
(Run:
13.1

16.9
8.7
8.1
20.2

0.19
0.04
0.02
0.08

4.49
0.80
0.89
1.40

10.14
2.07
1.22
3.12

1.52
0.17
0.18
0.21

42.8
7.4
8.4
17.2

14.6
2.3
2.5
6.8

BCMC12-3A M 228
BCMC12-3A M 229
BCMC12-3A M 230

1/13/2014
179 15.38
9:14:29
1488
PM
1/13/2014
180 10.42
9:16:11
2537
PM
1/13/2014
278 12.29
9:17:53699
PM

(Run:
10.3 1)0.07
(Run:
5.0 1)0.28
(Run:
4.5 1)

20.4
14.0
37.2

0.73
0.94
0.09

11.82
14.03
1.73

18.10
16.36
5.00

0.41
1.14
0.75

60.4
73.3
19.8

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

231
232
233
234

1/13/2014
137
3.38
9:19:35595
PM
1/13/2014
134
8.46
9:24:54312
PM
1/13/2014
121
5.09
9:26:36346
PM
1/13/2014
273 32.30
9:28:17639
PM

(Run:
0.9
(Run:
1.0
(Run:
0.8
(Run:
1.7

1)0.01
1)
1)
1)

11.2
18.6
2.9
12.5

0.23

0.07

3.31
0.58
0.28
1.94

3.92
1.49
0.80
3.43

0.93
0.20
0.12
1.19

BCMC12-3A M 235
BCMC12-3A M 237
BCMC12-3A M 238

1/13/2014
192 13.34
9:29:59776
PM
1/13/2014
193
7.39
9:33:23
1171
PM
1/13/2014
140
2.27
9:35:05
1690
PM

(Run:
0.9 1)
(Run:
25.3 1)
(Run:
7.8 1)0.02

15.7
16.8
11.6

0.10
0.19
0.27

2.12
3.54
5.19

4.96
5.71
13.26

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M

240
241
242
243

1/13/2014
140
3.62
9:38:28503
PM
1/13/2014
128 14.58
9:40:10
2304
PM
1/13/2014
63
2.20
9:48:53
1307
PM
1/13/2014
332 14.98
9:50:35445
PM

(Run:
3.9
(Run:
8.3
(Run:
1.5
(Run:
0.4

1)
1)0.30
1)
1)

8.2
17.1
9.4
6.8

1.48
0.10
0.19

0.39
23.42
3.30
6.39

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M

244
245
246
247

1/13/2014
137
7.11
9:52:16811
PM
1/13/2014
156 13.02
9:53:58586
PM
1/13/2014
175 11.27
9:55:40743
PM
1/13/2014
220 11.41
9:57:22784
PM

(Run:
6.9
(Run:
1.0
(Run:
0.3
(Run:
3.2

1)
1)
1)
1)

12.8
9.9
2.5
15.5

0.07
0.14
0.17
0.03

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

248
249
250
251
252
254
255
256
257
258
259
260
262
264
265
266
268
269
270
271
272
273
274
276
277
279
280

1/13/2014
177 15.05
9:59:04439
PM
1/13/2014
158 16.42
10:00:46
1261PM
1/13/2014
232
8.05
10:02:28
833PM
1/13/2014
149
6.56
10:04:09
561PM
1/13/2014
170 11.18
10:09:28
2523PM
1/13/2014
130
5.02
10:12:52
680PM
1/13/2014
281
6.90
10:14:34
748PM
1/13/2014
672
6.60
10:16:16
1875PM
1/13/2014
400 26.55
10:17:58
1309PM
1/13/2014
156 17.27
10:19:40
527PM
1/13/2014
201 18.54
10:21:22
641PM
1/13/2014
126 10.39
10:23:04
1104PM
1/13/2014
158 15.40
10:33:31
986PM
1/13/2014
201
6.11
10:36:55
480PM
1/13/2014
277
8.09
10:38:36
802PM
1/13/2014
148
7.43
10:40:17
230PM
1/13/2014
213 16.77
10:43:41
686PM
1/13/2014
254
7.09
10:45:23
2087PM
1/13/2014
213
7.44
10:47:05
890PM
1/13/2014
155 16.11
10:48:47
420PM
1/13/2014
181 11.28
10:54:05
573PM
1/13/2014
288
4.44
10:55:47
1386PM
1/13/2014
254
8.05
10:57:29
1462PM
1/13/2014
244 34.82
11:00:53
453PM
1/13/2014
241 23.97
11:02:34
708PM
1/13/2014
150
6.21
11:05:58
389PM
1/13/2014
46
5.51
11:07:40
541PM

(Run:
3.2 1)
(Run:
1.3
1)
0.02
(Run:
2.8
1)
(Run:
7.6
1)
(Run:
3.6
1)
0.09
(Run:
1.0
1)
(Run:
1.8
1)
28.5
(Run: 1)
(Run:
5.5
1)
(Run:
1.3
1)
(Run:
0.9
1)
(Run:
0.8
1)
(Run:
0.6
1)
(Run:
1.0
1)
(Run:
1.1
1)
(Run:
0.9
1)
(Run:
4.3
1)
25.0
(Run: 1)
(Run:
0.5
1)
(Run:
2.3
1)
0.10
(Run:
1.8
1)
(Run:
2.5
1)
11.1
(Run: 1)
0.09
(Run:
0.8
1)
(Run:
1.8
1)
0.11
(Run:
3.8
1)
(Run:
3.1
1)

30.3
6.1
12.3
11.2
11.5
10.1
8.7
54.4
19.1
4.1
11.2
9.8
8.0
27.6
15.2
8.7
7.5
18.6
5.8
7.8
13.9
48.2
17.8
6.3
19.7
14.3
61.1

0.06
0.31
0.02
0.03
0.82
0.05
0.03
0.11
0.22
0.04
0.08
0.11
0.25
0.19
0.11
0.04
0.18
0.18
0.27
0.13
0.04
0.18
0.14
0.05
0.24
0.02
0.08

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

1)
1)0.32
1)0.04
1)

1)
1)
1)
1)

1)
1)
1)
1)

47.0
46.6

7392
8438

0.09
2.96

48.9

9800

0.80

31

46

101.5
9770
39.0 10005

5.38
1.00

167
82

279
143

8794

0.97

57

154

8589
8494

0.27
0.53

48
57

59
80

147.1
33.9

9094
8310

0.97
1.14

190
63

294
97

487.6

60.6

7198

4.25

145

227

262.9
513.1
262.0
142.7

31.0
62.1
32.7
17.1

8408
9463
7497
8575

0.88
1.93
0.70
2.40

44
116
133
33

111
307
137
132

9.7
51.8
30.4

111.5
662.1
324.1

13.8
91.3
39.1

9857
7253
6749

0.20
0.71
0.14

32
68
60

166
190
105

140.0
86.7
122.2
92.3

35.7
21.8
31.5
22.2

357.8
240.6
339.3
229.7

47.8
28.7
39.3
25.6

9734
7949
8442
8638

1.49
1.83
3.63
1.35

65
37
38
51

102
106
92
98

13.4
54.6
35.9

53.1
224.1
152.6

13.1
58.0
39.5

142.5
636.9
438.5

17.8
76.1
51.9

7481
7510
7574

0.63
1.33
0.70

18
76
48

28
103
110

150.9
29.5
32.4
74.0

51.6
10.5
11.7
27.9

205.3
43.2
51.6
110.0

50.7
11.0
13.6
28.4

520.2
125.5
149.4
301.3

59.4
7471
15.7
8185
19.7 11411
35.2
7944

1.94
0.37
1.64
4.12

82
7
136
40

153
10
86
113

17.9
22.6
6.2

180.1
281.1
70.4

61.2
98.6
26.0

230.6
372.6
107.7

54.5
82.8
29.8

568.7
794.1
346.3

64.6
88.4
42.7

5193
5562
9556

3.36
4.41
1.24

69
104
57

96
228
44

18.7
7.5
4.8
17.3

5.6
2.2
2.1
6.0

71.6
31.2
29.1
70.8

22.0
11.0
11.9
23.7

79.5
50.2
55.1
95.5

21.4
13.7
17.2
23.6

206.8
152.2
192.5
257.6

25.1
19.6
27.2
29.7

7666
8474
8719
8102

0.39
0.42
0.54
0.98

47
39
26
23

42
60
84
40

1.03
0.05
0.89

23.3
30.3
53.2

6.6
11.6
18.8

79.2
131.5
206.1

28.7
47.5
71.5

115.7
184.4
262.2

30.5
45.1
59.5

331.3
466.3
583.4

40.3
51.1
65.7

8638
5653
8370

0.57
6.18
3.12

120
80
48

169
170
72

2.33
34.49
7.71
12.55

0.29
1.01
0.89
0.57

13.1
111.8
36.6
38.7

5.1
29.7
13.4
7.9

61.0
301.6
160.8
66.4

21.2
94.8
55.3
17.3

80.3
350.3
212.3
54.4

19.6
81.5
51.2
11.2

197.5
839.4
487.7
110.5

23.9
101.6
48.5
11.9

8746
5478
5391
9244

0.83
3.27
0.89
0.16

28
95
33
104

128
124
77
94

2.43
3.02
3.12
1.25

3.85
5.66
5.04
3.45

0.31
0.59
1.55
0.24

22.0
19.9
20.4
19.2

8.0
5.7
6.6
6.7

92.4
64.1
71.6
83.9

31.2
21.2
25.7
28.9

121.1
87.9
105.5
117.4

30.8
21.5
27.9
29.4

313.5
227.6
320.1
299.7

35.1
7035
27.0
8869
41.1
6690
37.7 10385

3.67
0.62
0.20
1.91

29
98
25
131

70
149
86
344

0.80
5.06
0.98
1.08
12.89
1.08
0.90
2.75
3.96
1.21
1.69
3.17
4.65
3.61
2.62
0.59
2.93
3.37
4.81
1.62
1.01
3.34
3.19
1.02
5.04
0.52
1.20

1.23

0.48
0.80
0.14
0.07
1.23
0.06
0.60
0.23
0.67
0.10
0.46
0.74
1.62
2.24
1.24
0.20
0.34
0.12
1.53
0.24
0.75
1.06
0.23
0.59
1.81
0.26
0.59

9.8

3.4

40.9

44.7
13.9
10.0
73.1
13.4
20.0
34.4
30.1
12.1
17.2
38.5
29.9
23.6
20.0
7.5
20.2
35.4
32.5
11.1
14.7
36.5
35.7
14.6
26.9
8.0
5.7

12.9
5.3
3.9
24.3
5.0
7.1
13.5
11.1
4.2
5.6
12.1
9.6
5.5
7.2
2.1
6.8
13.8
9.4
3.9
4.9
12.5
13.5
4.3
8.5
3.2
2.1

144.9
74.0
52.7
276.7
65.7
84.4
172.0
131.8
49.6
71.2
125.1
108.8
55.2
81.5
24.1
82.0
191.0
106.2
48.8
58.8
143.5
157.8
51.8
83.2
41.1
29.9

15.2
47.6
28.5
19.8
95.5
24.1
27.9
67.2
47.3
18.0
24.1
40.9
36.8
17.6
28.2
7.8
27.7
75.7
34.6
15.5
21.8
50.5
56.8
17.8
25.7
15.2
13.6

68.4

11.07
2.51
1.52
16.62
2.70
3.71
6.31
7.32
2.63
4.02
9.90
8.44
7.60
4.63
1.59
4.71
7.10
9.49
2.32
3.35
7.36
6.92
3.99
7.53
1.51
1.76

183.9
130.7
93.1
387.9
102.6
109.2
279.5
208.8
82.9
93.7
161.3
142.3
68.1
119.1
32.7
110.8
325.9
124.5
61.2
86.3
196.9
225.7
66.0
99.0
63.7
83.2

18.3
41.9
33.4
23.4
90.3
25.9
25.7
75.8
54.3
21.2
23.8
37.6
36.1
15.7
30.9
8.5
27.3
86.7
30.4
15.5
22.8
50.8
56.6
16.7
26.2
17.8
28.0

214.1
398.7
360.3
231.4
807.2
277.4
258.8
803.1
585.0
232.0
241.6
376.4
397.7
166.1
338.2
87.1
294.4
914.5
320.4
171.8
259.3
529.4
559.6
168.2
264.2
195.1
412.4

2.30
0.75
2.46
4.04
2.35
0.63
1.54
9.57
2.39
0.61
0.62
0.30
0.23
0.41
0.65
0.53
1.94
8.03
0.23
1.32
0.60
0.90
4.56
0.34
0.67
2.44
0.48

77
71
33
50
92
65
80
225
27
26
74
27
53
145
75
47
30
159
20
57
30
271
107
27
30
35
250

175
135
62
103
142
221
159
281
46
60
136
82
79
115
165
59
62
496
30
199
67
97
209
46
41
75
549

28.0
52.2
54.3
34.2
115.6
34.3
31.6
101.8
75.6
30.9
29.2
43.3
45.3
18.9
41.1
10.7
32.7
99.6
37.9
19.2
30.1
62.5
59.0
20.1
30.2
24.1
58.9

9823
9078
13116
12379
8308
10400
11132
11433
8714
8822
9050
6515
7815
7668
8436
9259
6824
9462
6863
8225
8024
9316
7807
8022
7855
9704
6970

Appendix D: LA-ICPMS trace element concentrations (ppm) in zircon - continued.
P

Analysis

Ti

Y

Nb

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

Th

U

24.6
64.8

102.9
254.0

23.1
54.9

230.3
487.5

32.6
71.9

8950
9003

1.60
0.54

32
93

80
72

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.769' W104°50.307' ±19ft)
BCMC12-3B L 001
BCMC12-3B L 071

1/15/2014
134
8.76
6:06:40654
PM (Run:
3.2 1)
1/13/2014
239 41.82
11:47:16
1749
PM (Run:
1.0 1)
0.22

9.4
28.7

0.05
0.90

1.79
13.64

2.89
19.00

0.36
6.26

14.1
70.8

5.3
17.7

68.0
198.1

BCMC12-3B L 072

1/13/2014
140 16.48
11:48:58
1493
PM

BCMC12-3B L 073
BCMC12-3B L 074

1/13/2014
163
9.27
11:50:40
3122
PM
1/13/2014
192 12.84
11:52:22
2697
PM

(Run:
1.5 1)
0.14

8.4

0.79

12.17

14.76

(Run:
6.0 1)
0.08
(Run:
5.5 1)
0.06

15.8
16.7

0.89
0.88

15.57
13.10

23.34
19.53

2.25

53.8

15.5

165.6

56.3

221.7

52.0

468.4

69.0

8176

1.17

53

76

1.97
1.78

117.4
83.4

33.6
27.8

348.3
308.0

116.8
103.1

455.2
416.6

96.4
92.1

809.6
848.0

111.7
121.9

8129
8906

2.63
2.49

88
130

123
178

BCMC12-3B L 075
BCMC12-3B L 078
BCMC12-3B L 079

1/13/2014
175 15.68
11:54:04
2074
PM

(Run:
4.9 1)
0.18

15.2

1.05

16.42

1/13/2014
117
9.43
11:59:08
418
PM
1/14/2014
167
7.31
12:00:50
831
AM

(Run:
8.2 1)
(Run:
9.7 1)

15.8
17.2

0.04
0.07

0.83
1.92

21.32

1.30

72.9

23.0

247.0

80.8

315.3

68.8

629.3

88.3

8319

2.13

70

84

1.57
4.59

0.19
0.32

9.2
20.5

3.5
7.3

41.9
90.6

15.2
30.8

68.7
125.9

16.9
30.8

178.4
292.9

22.2
35.3

8694
8183

4.81
4.61

39
49

130
135

BCMC12-3B L 080
BCMC12-3B L 081
BCMC12-3B L 082

1/14/2014
125
4.68
12:02:32
390
AM

(Run:
1.1 1)

22.1

0.05

1/14/2014
203
6.53
12:07:52
938
AM
1/14/2014
160
7.16
12:09:33
699
AM

14.9
(Run: 1)
(Run:
4.9 1)

14.9
13.9

0.03
0.03

1.21

2.24

0.29

10.0

3.2

34.2

12.2

55.0

15.6

171.9

22.8 10197

1.54

341

353

1.21
1.20

3.89
2.71

0.09
0.32

21.5
14.1

7.7
5.1

97.1
67.8

35.1
25.0

153.1
109.5

37.6
27.9

400.6
286.3

47.5 10362
33.6
8799

5.97
2.43

126
41

BCMC12-3B L 083

1/14/2014
216 13.30
12:11:15
1632
AM

(Run:
4.5 1)
0.04

24.4

253
116

0.99

16.70

21.41

1.93

70.4

19.4

195.0

63.9

247.0

55.4

554.9

61.6

7077

2.57

107

BCMC12-3B L 084
BCMC12-3B L 085

1/14/2014
160 13.88
12:12:57
560
AM
1/14/2014
169
8.10
12:14:39
401
AM

(Run:
2.7 1)
(Run:
1.5 1)

189

8.7
21.9

0.08
0.12

1.48
2.22

4.00
3.94

0.41
1.04

15.0
15.0

5.0
4.1

63.7
44.3

21.1
14.8

90.9
54.5

22.2
14.0

236.7
142.8

27.0
15.2

6953
6687

1.72
0.48

34
35

105
36

BCMC12-3B L 086
BCMC12-3B L 087

1/14/2014
153
4.49
12:16:21
1136
AM
1/14/2014
173 10.37
12:18:03
672
AM

24.7
(Run: 1)
(Run:
4.7 1)

18.4
12.4

0.04
0.11

1.19
2.96

4.46
4.87

0.26
0.17

22.6
20.7

8.8
6.6

111.4
73.3

40.3
25.0

183.7
106.8

47.3
26.9

488.4
284.4

51.0
30.0

8093
6974

12.06
1.27

102
39

317
145

BCMC12-3B L 088

1/14/2014
158 19.58
12:19:45
1136
AM

(Run:
1.8 1)

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

089
090
091
092

1/14/2014
302 15.28
12:21:26
1635
AM
1/14/2014
146
4.08
12:23:08
773
AM
1/14/2014
179 12.14
12:31:51
618
AM
1/14/2014
132
8.27
12:33:33
629
AM

(Run:
6.5
(Run:
9.4
(Run:
1.5
(Run:
3.8

1)
0.04
1)
1)
1)
0.01

2.9

0.12

3.29

8.89

0.57

41.0

12.8

138.6

45.0

173.8

40.8

406.2

44.7

7077

0.74

21

39

58.3
18.4
8.9
10.7

0.57
0.07
0.12
0.14

11.18
1.72
1.61
2.31

16.90
4.52
3.44
3.73

3.81
0.38
0.37
0.39

57.7
17.8
15.5
16.9

17.5
6.7
5.4
6.0

190.9
77.8
58.6
67.9

62.4
28.4
20.3
24.9

251.8
118.6
94.8
104.3

62.9
30.8
24.9
26.5

651.7
318.9
276.4
276.7

71.0
35.0
33.8
30.3

7118
7444
6739
6594

2.97
4.89
0.76
2.28

89
78
54
41

134
294
115
118

BCMC12-3B L 093
BCMC12-3B L 094
BCMC12-3B L 095

1/14/2014
286 14.14
12:35:15
1426
AM
1/14/2014
269 23.92
12:36:57
893
AM
1/14/2014
280 14.45
12:38:39
670
AM

(Run:
7.5 1)
(Run:
7.7 1)
(Run:
2.2 1)
0.12

53.4
40.8
6.9

0.33
0.25
0.13

6.73
4.65
2.53

11.31
6.76
4.24

3.04
1.92
0.57

44.5
27.0
20.3

14.9
8.8
6.4

164.4
96.6
74.1

55.0
33.7
25.0

224.5
139.7
105.7

55.0
35.8
26.7

592.6
391.1
288.1

63.5
43.9
34.2

7281
6658
6616

3.44
2.87
1.17

79
73
47

131
97
90

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

096
097
098
099

1/14/2014
173 11.16
12:40:21
629
AM
1/14/2014
115
6.06
12:42:02
1275
AM
1/14/2014
274 16.08
12:43:44
943
AM
1/14/2014
269 19.86
12:45:26
964
AM

(Run:
4.6
(Run:
2.3
(Run:
1.8
(Run:
5.3

13.8
10.3
28.3
10.1

0.15
0.33
0.33
0.28

2.73
7.11
6.58
4.71

4.21
9.52
10.34
7.26

0.88
0.67
3.03
0.70

19.6
41.0
35.1
29.1

6.0
12.5
10.0
8.8

70.4
140.1
109.7
111.2

24.9
47.1
34.4
38.6

100.3
194.4
138.1
156.7

25.0
47.9
32.9
39.1

277.9
472.6
343.5
424.1

30.0
50.0
37.5
47.9

5833
7253
6757
5494

2.57
1.55
0.72
3.76

51
53
51
83

139
132
82
160

BCMC12-3B L 100
BCMC12-3B L 101
BCMC12-3B L 102

1/14/2014
120
3.43
12:47:08
639
AM
1/14/2014
203 12.53
12:52:28
611
AM
1/14/2014
165 20.24
12:54:10
610
AM

12.6
3.4
5.4

0.02
0.06
0.14

0.57
1.09
2.93

2.10
3.27
5.44

0.12
0.25
0.39

10.5
15.9
20.1

5.0
4.9
6.2

64.1
62.6
71.4

24.1
22.8
23.8

109.9
99.3
95.9

30.3
24.4
23.2

335.9
272.8
260.2

36.5
33.8
29.0

9322
6413
5221

8.73
0.32
2.29

39
20
24

223
85
63

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

1/14/2014
295
3.96
12:57:34
774
AM (Run:
4.2 1)
1/14/2014
136
4.37
12:59:16
1499
AM (Run:
6.1 1)
1/14/2014
193
8.68
1:00:58
1174
AM (Run:
10.1 1)0.11
1/14/2014
148 18.98
1:02:39205
AM (Run:
1.2 1)

25.1
14.4
22.9
12.7

0.02
0.17
0.43
0.02

1.28
3.39
5.53
0.92

3.78
9.12
8.71
1.61

0.31
0.35
1.04
0.60

16.6
40.3
31.4
6.4

5.8
14.5
10.4
1.7

74.9
164.1
122.7
20.6

27.7
58.6
44.9
6.5

123.8
235.3
184.3
30.0

31.7
55.8
45.6
8.0

345.1
533.7
467.6
91.5

42.3 10308
58.3
7950
53.9
7351
11.3
7933

1.79
3.95
5.08
0.59

65
64
113
23

125
247
343
40

BCMC12-3B L 108
BCMC12-3B L 109
BCMC12-3B L 110

1/14/2014
166
5.45
1:04:21227
AM
1/14/2014
137
3.96
1:06:03
4086
AM
1/14/2014
113
3.07
1:07:45452
AM

(Run:
0.5 1)
(Run:
15.3 1)0.03
(Run:
0.5 1)

16.3
20.3
3.5

0.03
0.55
0.00

0.61
11.59
0.23

1.32
28.95
1.02

0.46
6.26
0.32

7.5
132.4
6.8

2.0
43.7
2.4

22.2
479.7
36.1

8.0
160.3
14.1

31.4
631.8
71.2

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

111
112
113
114

1/14/2014
182 16.22
1:16:28479
AM
1/14/2014
155
2.84
1:18:10
1504
AM
1/14/2014
151
7.58
1:19:52642
AM
1/14/2014
371 15.14
1:21:33804
AM

(Run:
1.0
(Run:
19.6
(Run:
0.8
(Run:
0.9

11.5
18.8
21.7
17.1

0.04
0.04
0.18
0.18

1.18
1.20
4.96
4.68

2.77
4.32
5.20
9.52

0.50
0.47
1.65
1.54

9.5
26.0
19.8
36.0

3.7
10.0
6.6
9.3

40.7
135.6
70.9
89.5

15.8
55.2
23.8
28.2

76.9
241.3
95.5
112.3

19.2
54.8
22.4
24.2

BCMC12-3B L 115
BCMC12-3B L 116
BCMC12-3B L 117

1/14/2014
125
6.07
1:23:15273
AM
1/14/2014
180
7.17
1:24:57
1152
AM
1/14/2014
273
5.73
1:26:39
2437
AM

(Run:
1.1 1)
(Run:
6.8 1)
(Run:
24.3 1)

10.8
13.7
19.9

0.06
0.06
0.16

1.10
1.27
3.78

2.50
3.65
7.75

0.85
0.12
0.22

8.8
24.0
53.4

2.4
8.6
20.2

24.4
108.9
256.0

9.3
40.6
93.5

36.6
184.1
386.1

9.7
44.8
78.9

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L

118
119
120
121

1/14/2014
273 16.71
1:28:21
4767
AM
1/14/2014
174
8.53
1:30:03
2564
AM
1/14/2014
120
4.64
1:31:45
2100
AM
1/14/2014
165
7.31
1:37:05
3129
AM

(Run:
11.0
(Run:
2.6
(Run:
12.7
(Run:
14.0

1)0.39
1)0.05
1)
1)0.05

22.6
14.9
17.4
20.8

1.50
0.65
0.11
0.76

20.60
12.98
3.19
12.41

28.50
19.89
9.79
16.39

1.43
1.36
0.52
1.17

159.2
76.3
54.8
88.2

46.8
24.0
19.4
30.1

499.6
269.8
231.7
330.1

178.3
93.9
83.8
119.0

703.3
384.3
339.3
484.2

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L

122
123
124
125

1/14/2014
151
8.28
1:38:47
2181
AM
1/14/2014
177
3.98
1:40:29535
AM
1/14/2014
124
4.34
1:42:11
2060
AM
1/14/2014
182 10.84
1:43:53
1137
AM

(Run:
7.1
(Run:
1.1
(Run:
10.4
(Run:
9.6

1)0.06
1)
1)
1)

15.8
15.4
16.3
18.7

0.72
0.08
0.33
0.27

10.83
1.06
6.53
4.58

13.76
3.26
12.91
7.62

0.63
0.62
1.22
0.26

67.1
15.9
54.9
31.8

22.2
4.6
19.4
10.3

241.1
51.0
222.5
123.3

82.7
18.5
78.0
43.7

339.2
76.2
324.6
180.0

75.9
18.2
72.9
42.9

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

126
127
128
129
130
131
133
134
136
138
140
141
142
143
144
147
148
149
150
151
152
153
154
155
156
157
158
159
161

1/14/2014
191
6.19
1:45:34
1141
AM
1/14/2014
132
5.80
1:47:16957
AM
1/14/2014
136
8.57
1:48:58446
AM
1/14/2014
152
6.32
1:50:40713
AM
1/14/2014
138 10.83
1:52:22880
AM
1/14/2014
128 13.50
2:01:07437
AM
1/14/2014
213 14.49
2:04:30663
AM
1/14/2014
156 19.14
2:06:12290
AM
1/14/2014
285
3.78
2:09:36916
AM
1/14/2014
129 10.97
2:12:59393
AM
1/14/2014
200 13.47
2:16:22
1423
AM
1/14/2014
176 12.50
2:21:43
1330
AM
1/14/2014
178
3.11
2:23:25364
AM
1/14/2014
137 11.47
2:25:07192
AM
1/14/2014
170 17.61
2:26:49
1758
AM
1/14/2014
119
4.47
2:31:55
1633
AM
1/14/2014
223 11.99
2:33:36400
AM
1/14/2014
211 15.63
2:35:18
1261
AM
1/14/2014
149
7.77
2:36:59588
AM
1/14/2014
123
7.43
2:45:43488
AM
1/14/2014
131
3.69
2:47:24829
AM
1/14/2014
173
8.54
2:49:07753
AM
1/14/2014
151 12.33
2:50:49981
AM
1/14/2014
293
4.13
2:52:30
1035
AM
1/14/2014
330
7.59
2:54:12673
AM
1/14/2014
151 11.87
2:55:54576
AM
1/14/2014
155
8.27
2:57:36771
AM
1/14/2014
207 18.93
2:59:17
1566
AM
1/14/2014
178
9.39
3:06:21
2083
AM

(Run:
18.2
(Run:
12.8
(Run:
2.4
(Run:
9.1
(Run:
12.7
(Run:
2.5
(Run:
7.3
(Run:
1.2
(Run:
7.1
(Run:
0.9
(Run:
1.7
(Run:
1.7
(Run:
0.7
(Run:
0.4
(Run:
4.1
(Run:
7.2
(Run:
1.5
(Run:
5.8
(Run:
5.3
(Run:
0.3
(Run:
5.3
(Run:
6.3
(Run:
0.4
(Run:
1.1
(Run:
0.9
(Run:
3.0
(Run:
4.4
(Run:
4.8
(Run:
4.9

1)0.18
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)0.04
1)0.05
1)
1)
1)0.18
1)0.04
1)
1)0.05
1)
1)
1)
1)
1)0.04
1)0.05
1)
1)
1)
1)0.24
1)0.12

20.2
15.6
6.0
16.3
19.0
4.8
15.5
25.1
35.2
5.4
43.0
9.9
9.4
7.5
9.7
12.2
7.3
10.0
10.3
3.0
18.2
16.6
8.7
31.8
15.6
12.9
13.8
15.6
20.1

0.10
0.04
0.06
0.05
0.24
0.04
0.12
0.08
0.04
0.08
0.49
0.68
0.04
0.08
0.95
0.31
0.06
0.43
0.09
0.02
0.06
0.05
0.64
0.57
0.07
0.08
0.13
0.90
0.95

2.67
2.02
0.75
1.98
3.94
1.16
2.91
1.89
1.01
1.70
8.80
11.15
1.11
0.92
14.02
6.63
1.36
8.89
0.75
0.75
2.34
1.61
9.17
11.12
1.03
1.77
2.86
11.79
14.60

5.00
4.38
1.86
3.70
7.62
2.33
5.76
2.66
3.36
3.20
15.50
14.64
3.00
1.47
15.45
13.32
3.97
13.56
2.69
1.80
5.10
3.72
11.21
15.18
3.96
3.08
4.03
13.49
19.01

0.27
0.32
0.17
0.26
0.38
0.34
0.34
0.65
0.30
0.24
4.25
2.11
0.64
0.54
1.62
0.89
0.37
1.15
0.34
0.69
0.42
0.43
1.92
5.76
0.35
0.38
0.56
1.09
1.27

28.7
23.5
11.2
18.9
27.0
11.9
19.0
11.5
20.5
11.8
54.6
52.4
10.3
6.1
57.6
52.7
18.4
49.3
13.3
9.1
20.9
21.8
39.4
45.9
20.8
14.2
23.6
56.9
74.9

10.1
8.7
3.7
6.4
8.8
4.1
6.9
3.1
7.3
3.8
16.1
14.9
3.5
1.8
18.0
17.6
5.6
15.1
4.5
3.8
7.2
6.9
11.3
12.6
6.7
4.9
6.7
16.5
21.6

118.9
106.1
42.2
73.5
106.3
49.3
77.3
30.2
86.2
43.4
162.2
159.6
36.6
19.2
205.0
198.5
48.1
149.9
60.7
49.4
82.1
75.8
116.0
122.5
71.2
62.4
82.7
170.4
228.0

43.3
35.8
16.0
27.9
34.4
16.2
25.7
10.5
32.2
14.4
51.8
51.4
12.0
6.3
68.4
66.6
15.0
48.5
22.3
18.3
30.0
27.0
36.3
38.0
24.4
21.0
28.7
58.3
77.8

189.9
150.9
74.0
115.7
138.6
64.5
108.9
40.9
138.9
62.3
203.5
201.2
51.9
29.4
262.7
256.5
54.0
188.1
92.5
80.0
127.5
112.4
140.9
139.1
98.9
98.5
125.4
235.4
315.5

45.6
34.9
17.8
29.2
32.1
15.3
27.3
10.4
38.6
15.3
48.9
46.4
13.2
8.2
62.1
58.8
13.4
44.7
23.6
21.6
32.1
27.6
33.5
35.9
22.4
24.7
29.9
53.5
69.2

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

104
105
106
107

1)
0.01
1)
1)
0.04
1)
0.06

17.5
(Run: 1)
(Run:
0.9 1)
(Run:
4.4 1)

1)
1)
1)0.05
1)

8.2
91.3
136.5 1246.2
19.8 230.6

12.1
141.7
36.1

9334
6071
8661

0.31
5.87
0.17

24
140
17

42
153
60

208.7
470.5
224.0
220.2

32.5
65.9
34.3
33.0

10374
12089
10543
10997

0.85
9.65
0.33
0.46

48
69
103
126

125
212
117
82

90.1
413.8
674.1

16.8 10290
55.8 12916
89.6
9792

0.55
3.86
7.47

23
140
201

39
347
322

143.3 1215.5
84.3 714.2
68.7 605.9
102.3 878.3

178.9
7339
99.7 10054
79.5
7627
119.8
7779

4.94
2.29
5.78
6.00

186
90
57
91

172
136
113
159

650.6
175.4
654.8
437.3

89.5
8614
27.0 12092
80.8
9577
54.6
7554

3.58
0.61
5.42
4.60

73
87
80
53

120
87
217
110

458.7
331.4
191.4
308.3
320.0
157.7
290.2
113.3
447.3
166.3
493.1
484.5
151.7
96.3
657.7
585.0
126.2
461.0
262.8
250.9
322.6
281.8
336.8
358.5
227.5
270.5
302.3
524.6
634.9

55.7
9943
38.3
7537
23.9
7582
37.0
8265
33.1
5713
16.7
7535
32.0
6244
13.3
7586
49.6 11249
19.7
5907
55.9
6772
52.5
6239
17.6
8037
12.4
6070
68.4
6034
58.3
5665
13.0
8018
48.0
6579
29.1
7416
30.3
7533
34.8
8030
33.1
6468
36.5
8082
46.6
8180
28.1
9107
34.6
8021
37.7
8078
64.9
7164
81.8
9798

9.75
5.72
1.28
4.48
4.25
1.24
2.30
0.59
4.36
0.30
0.69
1.11
0.43
0.12
2.60
3.78
0.71
2.27
2.39
0.08
3.59
2.49
0.44
0.39
0.26
1.34
2.36
2.65
7.45

80
39
23
58
43
19
35
83
206
22
155
45
40
38
61
40
103
69
44
27
108
51
146
114
90
50
39
55
200

210
106
75
168
103
71
71
69
282
93
170
83
91
41
116
114
235
87
177
181
365
186
211
120
79
118
89
78
468

Appendix D: LA-ICPMS trace element concentrations (ppm) in zircon - continued.
P

Analysis

Ti

Y

Nb

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Hf

Ta

Th

U

BCMC12-3B L 162

1/14/2014
243 10.08
3:08:02
1930
AM

(Run:
1.7 1)

33.4

0.08

3.43

8.05

0.82

47.3

16.0

174.9

62.2

275.2

60.9

540.9

73.7 12411

0.80

519

153

BCMC12-3B L 163
BCMC12-3B L 164

1/14/2014
233 12.97
3:09:44
1155
AM
1/14/2014
186
9.76
3:11:26
1060
AM

(Run:
5.6 1)0.01
(Run:
5.0 1)

12.0
14.4

0.22
0.17

3.50
1.71

5.70
5.71

0.78
0.89

27.6
30.1

9.7
9.6

114.1
107.2

41.9
37.1

184.2
164.5

44.5
36.5

425.2
308.3

62.2
46.8

8487
8504

3.10
2.50

91
26

209
45

BCMC12-3B L 165

1/14/2014
116
4.84
3:13:08287
AM

(Run:
0.8 1)0.02

12.0

0.10

0.92

1.20

0.40

7.0

2.0

23.5

8.4

42.5

11.0

107.8

18.1 10914

0.33

45

66

BCMC12-3B L 166
BCMC12-3B L 167

1/14/2014
172 12.73
3:14:50802
AM
1/14/2014
124 11.14
3:16:31825
AM

(Run:
8.1 1)
(Run:
3.2 1)

27.2
7.0

0.05
0.08

0.71
1.58

3.19
4.90

0.64
0.32

18.2
23.2

6.0
7.1

75.1
87.7

27.2
31.2

127.3
128.6

32.3
28.0

314.9
259.1

48.9 10884
37.3
8103

2.97
1.53

60
20

93
37

BCMC12-3B L 168

1/14/2014
218 24.97
3:18:12696
AM

(Run:
1.0 1)0.04

35.2

0.26

5.68

7.56

2.25

27.2

7.4

82.5

25.7

101.6

23.1

217.2

31.4

7927

0.54

24

31

BCMC12-3B L 169
BCMC12-3B L 170

1/14/2014
151
9.44
3:19:54
2163
AM
1/14/2014
171 16.65
3:21:37568
AM

(Run:
4.3 1)0.09
(Run:
1.5 1)

20.2
6.4

0.83
0.06

17.06
1.13

21.53
3.04

0.89
1.16

80.1
14.9

23.6
4.7

247.3
58.8

82.2
21.1

330.7
91.5

71.8
22.9

640.3
224.0

93.6
35.6

8812
9400

2.50
0.71

61
59

80
103

BCMC12-3B L 171

1/14/2014
147 13.44
3:30:21460
AM

(Run:
0.9 1)

11.9

0.05

0.93

2.06

0.54

11.1

3.6

40.0

15.3

68.5

16.4

158.5

24.7 11140

0.44

56

49

BCMC12-3B L 172
BCMC12-3B L 173

1/14/2014
138 11.28
3:32:03
2105
AM
1/14/2014
218 13.68
3:33:44779
AM

(Run:
3.7 1)0.03
(Run:
2.2 1)0.06

10.2
6.5

0.64
0.08

12.20
1.93

16.39
4.26

1.53
0.54

68.0
23.5

21.9
7.2

236.8
81.7

80.0
28.1

318.1
120.9

68.9
27.3

620.0
272.1

84.6
36.6

7890
7317

1.80
0.96

50
26

74
39

BCMC12-3B L 174

1/14/2014
149
2.73
3:35:26717
AM

(Run:
1.1 1)0.01

18.0

0.28

4.81

6.45

2.86

25.0

6.9

77.8

24.9

107.6

25.6

278.7

38.2

6939

0.45

41

63

BCMC12-3B L 175
BCMC12-3B L 176

1/14/2014
134 12.74
3:37:08842
AM
1/14/2014
218
4.78
3:38:50
1477
AM

(Run:
8.7 1)
(Run:
30.9 1)

9.4
26.1

0.18
0.12

3.66
2.61

5.07
6.44

0.59
0.23

25.7
30.8

8.3
11.6

96.6
146.5

33.8
53.6

130.9
239.7

30.8
57.7

300.5
605.6

36.7
71.5

6350
9480

3.61
11.19

16
157

29
319

BCMC12-3B L 177
BCMC12-3B L 178

1/14/2014
172
5.64
3:40:32
2369
AM
1/14/2014
85
6.42
3:42:14823
AM

(Run:
35.2 1)0.04
(Run:
3.8 1)

37.9
10.1

0.42
0.07

7.28
1.77

15.26
4.54

0.56
0.44

79.8
22.7

26.6
7.7

294.0
89.2

96.2
31.1

372.7
128.4

79.8
31.0

736.8
303.1

82.4
34.1

5036
6835

8.15
2.01

141
26

185
72

BCMC12-3B L 179

1/14/2014
156
8.13
3:43:55509
AM

(Run:
2.5 1)

13.0

0.03

0.98

2.87

0.16

13.8

4.8

54.0

17.5

68.2

16.3

168.0

19.2

9511

1.58

123

313

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

180
181
182
183

1/14/2014
255
2.09
3:45:37681
AM
1/14/2014
119
5.65
3:50:59799
AM
1/14/2014
250 29.00
3:52:41852
AM
1/14/2014
180 10.02
3:54:23613
AM

(Run:
0.5
(Run:
22.5
(Run:
1.7
(Run:
3.3

1)
1)
1)0.04
1)

4.1
11.8
24.6
18.1

0.04
0.04
0.49
0.05

1.13
0.68
7.73
1.62

2.71
2.89
10.56
3.24

0.37
0.05
2.86
0.30

14.7
16.4
38.2
16.3

5.6
6.2
11.3
5.4

67.1
80.4
108.8
65.8

24.6
30.0
33.1
22.9

107.4
129.4
121.6
94.4

26.8
33.0
27.8
25.0

289.3
354.4
285.3
272.6

35.9
39.8
30.8
29.6

7119
9272
7020
7977

0.30
8.89
0.86
2.08

16
79
34
75

37
192
27
226

BCMC12-3B L 184
BCMC12-3B L 185
BCMC12-3B L 186

1/14/2014
90 16.18
3:56:05360
AM
1/14/2014
172
0.95
3:57:47484
AM
1/14/2014
272 22.58
3:59:28720
AM

(Run:
3.8 1)
(Run:
3.4 1)0.01
(Run:
3.2 1)0.05

6.9
42.8
12.9

0.09
0.03
0.29

2.18
0.67
4.65

3.02
1.25
6.47

0.14
0.51
0.81

12.5
6.7
25.6

3.8
2.9
7.9

39.7
39.2
86.2

14.3
16.8
27.5

59.2
82.6
105.4

14.6
23.8
27.4

166.8
301.7
280.5

20.0
5217
36.2 10708
31.7
5098

1.32
3.30
1.17

15
121
24

30
239
43

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

187
188
191
192

1/14/2014
344 12.32
4:01:10451
AM
1/14/2014
177
8.33
4:02:52
1878
AM
1/14/2014
163
1.76
4:15:02358
AM
1/14/2014
196
7.39
4:16:44870
AM

(Run:
0.9
(Run:
6.0
(Run:
1.5
(Run:
6.8

13.5
19.5
7.8
18.4

0.07
0.80
0.13

1.17
12.99
0.21
2.14

3.72
15.46
1.56
3.62

0.49
0.75
0.51
0.38

17.0
59.2
8.2
21.2

4.9
17.7
2.7
7.3

50.7
203.3
33.7
88.6

16.0
71.7
12.4
32.5

63.8
293.6
54.4
139.5

15.0
67.2
15.4
38.5

158.9
663.5
183.3
418.7

17.3
66.2
22.1
45.7

8544
5685
8735
8607

0.29
4.31
0.87
3.86

61
133
48
124

47
326
121
329

BCMC12-3B L 193
BCMC12-3B L 194
BCMC12-3B L 195

1/14/2014
194 35.98
4:18:25363
AM
1/14/2014
223
6.67
4:20:07807
AM
1/14/2014
209
9.91
4:21:49670
AM

(Run:
2.2 1)
(Run:
15.7 1)
(Run:
4.3 1)

16.6
22.6
11.6

0.07
0.12
0.06

1.46
3.34
0.79

2.16
5.39
2.69

0.67
0.36
0.06

11.3
23.3
15.4

3.2
7.1
5.2

36.0
88.4
68.2

12.5
29.7
23.9

52.5
124.9
110.1

13.8
30.8
26.4

157.3
332.2
296.5

17.0
33.1
30.3

7895
6318
8539

0.88
5.77
2.16

81
43
63

156
136
142

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

196
197
198
199

1/14/2014
117
4.81
4:23:31424
AM
1/14/2014
198
6.27
4:25:12601
AM
1/14/2014
178 16.06
4:26:54
1432
AM
1/14/2014
146
6.22
4:28:36
1565
AM

(Run:
7.2
(Run:
6.6
(Run:
2.3
(Run:
4.1

1)
1)0.04
1)0.11
1)0.04

12.5
6.5
8.4
18.5

0.03
0.06
0.55
0.65

0.85
1.36
8.12
12.06

1.72
3.33
10.99
16.49

0.09
0.22
2.87
1.03

8.8
14.0
43.7
56.7

3.3
5.4
12.8
18.0

40.4
61.8
147.7
191.1

14.3
21.4
52.9
60.8

66.5
94.3
216.9
237.2

17.7
24.3
54.0
55.8

213.7
260.4
596.4
543.7

23.0
28.0
64.0
53.2

8722
8221
6059
6347

3.64
3.14
1.65
2.27

73
53
105
73

342
183
243
174

BCMC12-3B L 200
BCMC12-3B L 201
BCMC12-3B L 205

1/14/2014
177
8.26
4:30:18
1486
AM
1/14/2014
147
9.46
4:35:40651
AM
1/14/2014
137 20.05
4:42:28438
AM

(Run:
8.7 1)0.56
(Run:
9.5 1)
(Run:
1.3 1)

15.3
14.0
5.9

0.42
0.03
0.09

6.13
1.06
2.54

11.82
3.04
4.05

0.47
0.13
0.19

45.9
15.9
16.1

14.8
5.4
4.8

172.9
65.9
49.8

57.4
23.9
17.2

228.3
106.8
69.6

56.2
27.1
16.7

555.8
299.9
177.2

57.3
34.0
23.6

7536
7945
6723

3.53
4.57
0.42

106
54
27

136
151
87

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

1/14/2014
132
7.50
4:44:10880
AM
1/14/2014
683
3.14
4:45:52
1850
AM
1/14/2014
152 10.49
4:47:34
1523
AM
1/14/2014
724
3.55
4:49:15
2027
AM

(Run:
3.8
(Run:
9.5
(Run:
2.5
(Run:
3.3

11.1
16.2
10.8
19.8

0.04
0.05
0.29
0.08

0.52
1.44
6.54
2.27

2.00
4.87
11.95
6.92

0.38
0.33
1.41
0.78

15.4
32.4
50.1
46.8

6.2
12.6
16.1
16.1

81.9
172.1
171.0
195.4

31.3
69.4
57.8
70.6

142.7
313.4
232.1
300.5

35.9
81.1
54.4
69.6

377.7
899.5
518.3
661.1

48.2
9696
124.2 10274
69.0
7979
89.9 11586

2.22
3.16
1.48
1.32

61
107
54
109

180
227
87
162

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

206
207
208
209

1)
1)0.08
1)
1)

1)
1)
1)
1)0.22

Appendix E: Chondrite-normalized REE contents in zircons based on values of Sun and McDonough (1989).
La

Analysis

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Florida Mountain Granite (sample 08FM-10 of Amato and Mack, 2012; N32°08.929' W107°39.163')
08FM-10DH 22
08FM-10DH 23

0.05
0.05

30.00
30.06

2.18
1.80

7.4
7.2

50.5
52.7

11.1
12.0

191
189

341
385

582
619

908
957

1261
1340

1910
2003

2808
2888

2189
2298

08FM-10DH 25

0.20

22.95

3.96

20.2

106.4

24.1

397

673

1062

1591

2175

2925

3877

3367

08FM-10DH 26

0.14

24.31

5.78

22.4

122.6

29.7

427

736

1165

1771

2289

3102

4149

3630

08FM-10DH 28

0.07

30.01

1.72

7.5

40.5

5.9

178

349

588

940

1308

1836

2606

2333

08FM-10DH 29
08FM-10DH 31

0.02
0.04

13.25
17.50

0.63
1.48

2.4
8.7

22.7
44.4

8.3
15.4

100
179

196
331

330
545

534
881

779
1190

1124
1626

1597
2270

1550
2258

08FM-10DH 32

0.02

17.48

0.61

2.9

26.9

7.1

118

238

409

692

966

1357

1867

1888

08FM-10DH 33

0.03

18.29

1.21

5.9

43.8

10.5

162

292

498

786

1101

1589

2099

2170

08FM-10DH 34

0.03

18.57

1.00

5.0

39.1

8.4

165

288

514

843

1170

1629

2237

2288

08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH
08FM-10DH

0.01
0.09
0.01
0.03
0.08
0.12
0.02
0.38
0.26
0.33
0.10
0.18
0.10
0.13
0.04
0.10
0.04
0.31
0.02
0.02
0.02
0.02
0.13
0.04
0.10

23.88
25.37
19.76
24.41
25.57
14.18
24.64
20.17
27.69
24.45
19.02
18.33
14.98
17.42
26.04
28.11
27.10
26.20
16.07
17.91
24.00
16.27
25.04
13.59
19.43

0.44
6.29
0.44
1.35
3.38
0.79
0.73
6.95
5.06
6.15
3.90
3.68
3.14
4.94
1.64
3.61
1.67
6.44
0.84
0.83
3.01
0.99
5.50
1.50
4.06

3.4
25.4
3.4
3.8
13.9
4.8
5.8
21.9
17.2
22.3
14.5
15.7
12.9
18.1
7.1
14.7
7.7
22.2
4.8
3.3
12.0
4.9
19.1
5.9
18.3

36.8
139.6
35.4
31.0
87.5
30.6
35.8
110.0
82.0
108.9
88.1
106.7
75.7
95.6
54.6
85.7
53.7
111.0
35.7
34.4
75.2
27.1
99.8
39.4
98.7

6.4
36.2
7.8
5.0
17.3
9.7
7.6
35.8
18.5
24.6
22.6
26.7
22.1
22.6
10.1
17.3
11.1
29.7
9.0
8.5
18.9
12.1
24.4
12.6
25.0

137
452
148
156
306
128
148
329
290
359
289
309
233
329
179
312
197
459
125
132
286
145
347
151
308

286
783
246
300
554
210
265
556
518
657
487
522
405
532
329
551
385
806
261
267
491
262
589
278
525

480
1298
455
528
898
367
473
921
871
1003
817
865
661
864
581
894
663
1356
443
459
794
433
976
456
872

795
1989
721
846
1369
571
777
1399
1316
1554
1175
1254
959
1357
951
1413
1042
2091
724
739
1281
702
1516
676
1248

1082
2608
1018
1234
1795
756
1017
1817
1704
2042
1526
1607
1279
1722
1298
1932
1483
2726
1005
1005
1777
960
2047
913
1628

1602
3406
1436
1713
2579
1116
1495
2587
2488
2889
2188
2259
1896
2348
1860
2711
2139
3495
1417
1460
2439
1420
2816
1430
2356

2200
4478
1986
2305
3507
1680
2250
3694
3550
4074
3234
3335
2628
3334
2670
3629
2830
4764
1999
1984
3207
1980
3924
2145
3423

2096
4153
1986
2366
3073
1398
1828
2730
2682
3072
2390
2531
2040
2850
2418
3231
2836
4549
2001
2027
3230
1891
3160
1555
2540

2856
3406
1813
1782
3345
1650
1591
1536
2214
1991
1812
2622
1843
1560
5772
2504
2934
2772
2949
1896

2677
3054
1657
1661
2771
1407
1235
1459
1655
1399
1417
1802
1475
1164
4276
1943
2213
2216
2809
1800

36
37
38
39
42
44
46
49
50
51
53
54
55
56
57
58
64
70
72
73
77
79
84
85
87

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.762' W104°50.345' ±19ft)
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

001
002
003
004
005
006
009
010
011
012
014
016
017
018
019
020
021
022
024
025

1/13/2014
0.02
27.37
6:05:54 PM
3.55 (Run:
14.0
1)
1/13/2014
0.06
53.30
6:07:37 PM
2.30 (Run:9.6
1)
1/13/2014
0.08
11.48
6:09:19 PM
3.18 (Run:
11.5
1)
1/13/2014
0.01
16.25
6:11:01 PM
0.41 (Run:4.3
1)
1/13/2014
0.15
29.64
6:12:43 PM
5.89 (Run:
23.0
1)
1/13/2014
0.01
12.83
6:14:25 PM
0.33 (Run:1.6
1)
1/13/2014
0.06
33.37
6:19:31 PM
1.16 (Run:3.7
1)
1/13/2014
0.01
6:21:13
5.11
PM
0.23 (Run:0.7
1)
1/13/2014
0.01
26.88
6:26:31 PM
0.46 (Run:3.1
1)
1/13/2014
0.02
32.11
6:28:13 PM
0.99 (Run:4.1
1)
1/13/2014
0.02
25.01
6:31:37 PM
0.84 (Run:1.9
1)
1/13/2014
0.06
66.43
6:35:01 PM
2.29 (Run:8.0
1)
1/13/2014
0.00
19.75
6:36:42 PM
0.16 (Run:1.4
1)
1/13/2014 6:38:25
5.95
PM
0.25 (Run:1.1
1)
1/13/2014
0.66
31.36
6:40:07 10.19
PM (Run:
30.8
1)
1/13/2014
0.04
20.70
6:41:48 PM
2.24 (Run:9.5
1)
1/13/2014
0.01
21.94
6:50:30 PM
0.57 (Run:4.5
1)
1/13/2014
0.04
24.22
6:52:12 PM
1.44 (Run:8.1
1)
1/13/2014
0.02
19.38
6:55:36 PM
0.71 (Run:4.6
1)
1/13/2014
0.04
23.58
6:57:18 PM
1.63 (Run:5.9
1)

62.4
54.6
60.5
18.8
117.2
15.6
25.6
12.7
23.6
28.6
21.4
45.3
15.5
12.7
157.3
50.4
40.8
54.2
34.8
36.8

10.2
16.8
26.2
5.9
18.7
1.0
3.9
7.8
5.6
9.5
10.1
30.2
5.2
3.2
26.9
8.8
9.2
21.1
12.9
9.6

201
228
172
87
339
68
104
36
88
95
71
126
70
52
505
165
166
203
189
128

370
456
279
184
569
134
171
70
179
190
142
265
126
111
857
286
308
323
361
253

623
834
447
304
894
264
302
143
334
339
245
474
248
235
1386
507
589
554
607
436

1006
1369
679
529
1349
447
452
267
550
541
406
736
400
392
2078
766
891
863
1044
673

1346
1869
876
739
1710
648
587
398
788
747
598
1021
598
600
2700
995
1252
1140
1386
925

1999
2627
1293
1172
2417
1058
1004
795
1350
1261
1027
1680
1084
985
4004
1638
1970
1828
2134
1338

BCMC12-3A L 026

1/13/2014
0.01
6:59:00
2.52
PM
0.27 (Run:2.4
1)

34.0

4.7

148

237

372

469

502

683

857

736

BCMC12-3A L 029

1/13/2014
0.06
36.37
7:04:06 PM
2.21 (Run:7.0
1)

41.2

6.6

135

224

400

653

909

1418

2057

2109

BCMC12-3A L 030
BCMC12-3A L 031

1/13/2014
0.03
65.35
7:05:47 PM
1.25 (Run:4.9
1)
1/13/2014
0.03
29.31
7:11:06 PM
1.26 (Run:4.8
1)

38.4
38.1

28.5
4.5

100
127

200
215

371
389

621
637

947
853

1608
1280

2524
1855

2553
1912

BCMC12-3A L 032

1/13/2014
0.51
22.81
7:12:47 10.27
PM (Run:
30.1
1)

132.1

27.5

370

591

1031

1557

1997

2666

3524

3346

BCMC12-3A L 033

1/13/2014
0.01
26.78
7:14:29 PM
0.36 (Run:2.7
1)

37.0

1.2

157

357

658

1121

1610

2507

3557

3182

BCMC12-3A L 034

1/13/2014
0.03
13.78
7:16:10 PM
1.16 (Run:4.3
1)

30.6

20.5

119

222

401

708

1038

1732

2648

2667

BCMC12-3A L 035
BCMC12-3A L 036

1/13/2014
0.53
18.45
7:17:52 PM
9.51 (Run:
30.1
1)
1/13/2014
0.04
82.77
7:19:34 PM
1.49 (Run:5.0
1)

123.8
37.3

11.6
17.1

350
130

588
252

943
448

1488
732

1924
1059

2759
1713

3829
2648

3319
2283

BCMC12-3A L 037

1/13/2014
0.02
7:21:16
6.69
PM
0.86 (Run:3.6
1)

24.6

3.2

72

134

225

356

464

772

1194

1075

BCMC12-3A L 038

1/13/2014
0.02
22.83
7:22:58 PM
0.85 (Run:2.5
1)

18.0

11.4

84

183

381

715

1096

2063

3713

3425

BCMC12-3A L 040

1/13/2014
0.09
20.15
7:26:22 PM
3.39 (Run:
15.6
1)

91.5

14.3

276

465

782

1129

1404

2158

3092

2275

BCMC12-3A L 041
BCMC12-3A L 042

1/13/2014
0.01
26.72
7:35:04 PM
0.42 (Run:1.9
1)
1/13/2014
0.02
14.19
7:36:46 PM
0.75 (Run:5.6
1)

11.4
27.6

3.4
4.1

32
94

64
145

136
214

234
265

355
316

602
459

1083
676

919
490

BCMC12-3A L 043

1/13/2014
0.02
15.78
7:38:28 PM
0.80 (Run:2.2
1)

19.4

3.3

73

131

250

393

569

1005

1649

1417

BCMC12-3A L 045

1/13/2014
0.02
59.83
7:41:51 PM
0.74 (Run:5.7
1)

30.6

4.6

123

208

336

501

676

1076

1723

1296

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

1/13/2014
0.20
27.65
7:43:33 PM
4.46 (Run:
16.6
1)
1/13/2014
0.02
7:45:15
5.80
PM
0.65 (Run:1.4
1)
1/13/2014
0.19
47.45
7:46:57 PM
3.10 (Run:9.4
1)
1/13/2014
0.01
58.63
7:48:39 PM
0.29 (Run:1.7
1)
1/13/2014
0.03
13.04
7:57:22 PM
1.36 (Run:4.3
1)
1/13/2014
0.02
7:59:04
7.48
PM
0.92 (Run:3.6
1)
1/13/2014
0.67 109.65
8:00:46 11.98
PM (Run:
35.8
1)
1/13/2014
0.38
69.75
8:02:28 11.18
PM (Run:
36.6
1)
1/13/2014
0.02
8:05:52
6.92
PM
0.85 (Run:3.3
1)
1/13/2014
0.04
21.96
8:09:16 PM
1.61 (Run:9.2
1)
1/13/2014
0.02
47.19
8:10:57 PM
0.89 (Run:6.3
1)
1/13/2014
0.02
14.85
8:19:40 PM
0.66 (Run:3.1
1)
1/13/2014
0.69
58.36
8:21:22 13.11
PM (Run:
36.7
1)
1/13/2014
0.01
8:23:04
9.94
PM
0.24 (Run:1.3
1)
1/13/2014
0.25
92.52
8:24:45 PM
2.26 (Run:9.9
1)
1/13/2014
0.06
29.47
8:26:26 PM
1.82 (Run:
13.2
1)
1/13/2014
0.02
8:28:08
3.58
PM
0.61 (Run:5.3
1)
1/13/2014
0.04
20.11
8:29:50 PM
1.98 (Run:9.8
1)
1/13/2014
0.01
22.03
8:31:32 PM
0.58 (Run:2.9
1)
1/13/2014
0.26
53.00
8:33:14 11.23
PM (Run:
32.0
1)
1/13/2014
0.02
24.33
8:34:56 PM
0.79 (Run:2.5
1)
1/13/2014
0.03
10.09
6:53:54 PM
1.16 (Run:5.7
1)
1/15/2014
0.04
6:10:06
6.51
PM
1.66 (Run:
7.2
1)
1/15/2014
0.01
22.84
6:15:12 PM
0.46 (Run:
2.4
1)
1/15/2014
0.16
17.89
6:16:54 PM
2.62 (Run:
9.7
1)
1/15/2014
0.03
66.04
6:20:18 PM
1.10 (Run:
4.9
1)
1/15/2014
0.05
65.51
6:22:00 PM
2.16 (Run:
7.0
1)
1/15/2014
0.01
13.54
6:32:25 PM
0.48 (Run:
2.8
1)
1/15/2014
1.34
18.19
6:34:07 PM
5.01 (Run:
8.6
1)
1/15/2014
0.19
38.04
6:35:49 PM
0.61 (Run:
3.7
1)
1/15/2014
0.01
14.43
6:37:31 PM
0.23 (Run:
0.7
1)
1/15/2014 6:39:13
6.27
PM
0.21 (Run:
0.9
1)
1/15/2014
0.01
16.99
6:40:55 PM
0.38 (Run:
2.0
1)
1/15/2014
0.05
6:42:38
4.12
PM
2.19 (Run:
8.9
1)
1/13/2014
0.02
29.86
8:40:16 PM
0.71 (Run:
2.8
1)
1/13/2014
0.02
15.75
8:43:40 PM
0.73 (Run:
3.7
1)
1/13/2014
0.02
20.91
8:47:03 PM
0.70 (Run:
3.3
1)
1/13/2014
0.02
10.57
8:48:44 PM
0.70 (Run:
3.1
1)
1/13/2014
0.02
25.79
8:50:27 PM
0.89 (Run:
3.7
1)
1/13/2014
0.19
19.99
8:52:08 PM
5.33 (Run:
18.5
1)
1/13/2014
0.01
10.41
8:53:50 PM
0.33 (Run:
2.6
1)
1/13/2014
0.05
27.59
8:55:32 PM
2.01 (Run:
9.6
1)
1/13/2014
0.01
14.28
9:04:19 PM
0.42 (Run:
1.7
1)
1/13/2014
0.01
13.28
9:06:01 PM
0.26 (Run:
1.9
1)
1/13/2014
0.02
33.07
9:09:25 PM
0.80 (Run:
3.0
1)
1/13/2014
0.31
33.26
9:14:29 PM
7.73 (Run:
25.3
1)

86.4
11.9
42.9
16.6
26.9
39.4
138.1
128.7
25.3
38.2
36.5
26.1
158.0
8.2
55.8
95.4
26.9
39.3
23.9
139.1
21.4
39.2
40.4
19.4
68.2
29.7
46.1
24.0
27.0
26.5
5.6
4.6
16.3
44.3
23.8
20.5
19.9
23.4
15.3
76.3
16.0
66.3
13.5
8.0
20.4
118.3

18.6
4.0
9.0
3.6
20.6
7.2
51.1
53.9
7.3
6.3
24.0
10.5
39.0
2.4
26.2
16.0
17.3
2.4
8.4
46.8
24.8
7.2
19.4
7.0
7.5
19.6
31.6
5.2
12.9
12.4
1.6
2.0
13.9
38.8
8.3
10.0
4.5
5.0
14.4
31.7
8.8
26.3
3.0
3.1
3.7
7.1

322
43
156
85
104
152
347
308
76
118
131
87
358
32
176
323
129
135
89
422
77
129
171
65
284
98
133
87
125
71
29
19
76
131
105
83
84
92
61
205
88
208
36
41
84
294

625
80
224
174
155
288
574
505
156
190
239
125
566
69
326
618
223
237
175
696
140
205
319
109
559
173
240
156
265
131
55
43
152
231
200
152
172
149
105
359
186
391
63
67
182
479

1102
117
388
323
254
455
948
796
282
380
423
178
942
130
555
1080
380
375
313
1125
260
355
547
215
992
285
425
272
469
224
111
72
333
363
357
258
310
275
166
610
364
594
116
128
291
709

1758
174
546
563
370
673
1386
1161
448
579
671
271
1282
216
859
1777
600
618
552
1642
420
538
900
363
1681
455
700
427
785
354
189
132
650
553
587
408
532
415
236
964
634
911
186
207
493
1082

2428
221
722
889
462
921
1912
1514
617
743
971
356
1694
315
1228
2355
803
846
794
2257
593
743
1303
576
2506
639
1047
591
1176
554
294
211
1072
750
846
524
739
558
321
1354
922
1240
261
312
665
1393

3638
353
1129
1548
696
1411
2993
2403
1058
1215
1604
588
2611
579
1937
3466
1189
1231
1282
3244
983
1128
1923
943
4069
1033
1775
985
1896
933
520
379
2033
1193
1400
856
1236
869
512
2273
1550
1990
432
532
1115
2136

5317
527
1819
2798
1066
2233
4636
3675
1713
1868
2508
894
3641
894
2982
4714
1767
1710
1956
4417
1565
1685
2944
1557
6366
1632
2868
1546
3018
1541
840
656
3895
1907
2105
1415
1996
1351
838
3747
2580
3060
738
879
1772
3345

3631
379
1389
2197
835
1676
3563
2744
1389
1459
2104
818
2966
873
2877
4149
1851
1836
1925
3995
1537
1518
2799
1531
5791
1336
2385
1219
2444
1286
673
545
3593
1541
1882
1130
1549
1008
701
2996
2045
2339
617
776
1384
2542

L 046
L 047
L 048
L 049
L 052
L 053
L 054
L 055
L 057
L 059
L 060
L 061
L 062
L 063
L 064
L 065
L 066
L 067
L 068
L 069
L 070
L0 23
M 003
M 006
M 007
M 009
M 010
M 012
M 013
M 014
M 015
M 016
M 017
M 018
M 212
M 214
M 216
M 217
M 218
M 219
M 220
M 221
M 222
M 223
M 225
M 228

BCMC12-3A M 229

1/13/2014
1.17
22.80
9:16:11 PM
9.94 (Run:
30.0
1)

106.9

19.6

357

604

1107

1742

2252

3247

4671

3482

BCMC12-3A M 230

1/13/2014
0.02
60.75
9:17:53 PM
0.91 (Run:
3.7
1)

32.7

12.9

96

165

277

459

651

1170

2037

1683

BCMC12-3A M 231
BCMC12-3A M 232

1/13/2014
0.05
18.36
9:19:35 PM
2.39 (Run:
7.1
1)
1/13/201430.36
9:24:54 PM
0.28 (Run:
1.2
1)

25.6
9.8

16.1
3.4

91
36

150
58

282
123

388
195

480
303

840
537

1216
895

989
770

BCMC12-3A M 233

1/13/2014 9:26:36
4.72
PM
0.13 (Run:
0.6
1)

5.2

2.1

23

57

114

210

333

673

1132

1071

BCMC12-3A M 234

1/13/2014
0.02
20.50
9:28:17 PM
0.77 (Run:
4.2
1)

22.4

20.5

84

160

279

419

577

925

1515

1168

BCMC12-3A M 235

1/13/2014
0.03
25.65
9:29:59 PM
1.05 (Run:
4.5
1)

32.4

17.8

114

176

312

507

699

1197

1949

1587

BCMC12-3A M 237
BCMC12-3A M 238

1/13/2014
0.05
27.46
9:33:23 PM
2.01 (Run:
7.6
1)
1/13/2014
0.10
18.96
9:35:05 PM
2.87 (Run:
11.1
1)

37.3
86.6

0.9
15.3

147
259

310
503

518
811

839
1263

1114
1584

1769
2332

2743
3432

2012
2586

BCMC12-3A M 240

1/13/201413.41
9:38:28 PM
0.19 (Run:
0.8
1)

15.2

5.1

64

136

240

375

485

770

1162

941

BCMC12-3A M 241

1/13/2014
1.27
27.90
9:40:1015.61
PM (Run:
50.2
1)

225.4

17.4

544

794

1187

1674

2116

3197

4938

4002

BCMC12-3A M 242

1/13/2014
0.03
15.33
9:48:53 PM
1.10 (Run:
7.1
1)

50.4

15.4

178

359

633

976

1283

2007

2869

1909

BCMC12-3A M 243
BCMC12-3A M 244

1/13/2014
0.05
11.05
9:50:35 PM
1.99 (Run:
13.7
1)
1/13/2014
0.02
20.88
9:52:16 PM
0.70 (Run:
5.2
1)

82.0
25.2

9.8
5.3

188
107

210
213

261
364

305
551

329
732

437
1209

650
1844

467
1380

BCMC12-3A M 245

1/13/2014
0.04
16.24
9:53:58 PM
1.52 (Run:
6.5
1)

37.0

10.2

97

152

253

375

531

843

1339

1064

BCMC12-3A M 246

1/13/2014
0.05
9:55:40
4.05
PM
1.82 (Run:
6.7
1)

32.9

26.7

99

175

282

454

638

1093

1883

1618

BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A
BCMC12-3A

1/13/2014
0.01
25.35
9:57:22 PM
0.33 (Run:
2.7
1)
22.5
1/13/2014
0.02
49.56
9:59:04 PM
0.61 (Run:
1.7
1)
8.1
1/13/2014
0.10
10.03
10:00:463.23
PM (Run:
10.81) 72.4
1/13/2014
0.01
20.03
10:02:280.26
PM (Run:
2.11) 16.4
1/13/2014
0.01
18.30
10:04:090.34
PM (Run:
2.31)
9.9
1/13/2014
0.37
18.82
10:09:288.59
PM (Run:
27.61) 108.6
1/13/2014
0.01
16.47
10:12:520.50
PM (Run:
2.31) 17.6
1/13/2014
0.01
14.26
10:14:340.27
PM (Run:
1.91) 24.2
1/13/2014
0.03
88.88
10:16:161.15
PM (Run:
5.91) 41.3
1/13/2014
0.06
31.20
10:17:582.29
PM (Run:
8.51) 47.8
1/13/2014
0.01
10:19:40
6.65
0.37
PM (Run:
2.61) 17.2
1/13/2014
0.02
18.24
10:21:220.85
PM (Run:
3.61) 26.3
1/13/2014
0.03
15.94
10:23:041.13
PM (Run:
6.81) 64.7
1/13/2014
0.07
13.05
10:33:312.60
PM (Run:
9.91) 55.1
1/13/2014
0.05
45.07
10:36:551.98
PM (Run:
7.71) 49.7
1/13/2014
0.03
24.81
10:38:361.17
PM (Run:
5.61) 30.3
1/13/2014
0.01
14.26
10:40:170.41
PM (Run:
1.31) 10.4
1/13/2014
0.05
12.27
10:43:411.90
PM (Run:
6.31) 30.8
1/13/2014
0.05
30.42
10:45:231.88
PM (Run:
7.21) 46.4
1/13/2014
0.07
10:47:05
9.42
2.81
PM (Run:
10.31) 62.0
1/13/2014
0.42
12.75
10:48:471.34
PM (Run:
3.51) 15.2
1/13/2014
0.01
22.74
10:54:050.44
PM (Run:
2.21) 21.9
1/13/2014
0.05
78.69
10:55:471.89
PM (Run:
7.21) 48.1
1/13/2014
0.36
29.12
10:57:291.45
PM (Run:
6.81) 45.2
1/13/2014
0.01
10.30
11:00:530.50
PM (Run:
2.21) 26.1
1/13/2014
0.45
32.11
11:02:342.48
PM (Run:
10.81) 49.2
1/13/2014
0.01
23.33
11:05:580.25
PM (Run:
1.11)
9.9
1/13/2014
0.02
99.89
11:07:400.86
PM (Run:
2.61) 11.5

4.1
8.3
13.8
2.3
1.2
21.2
1.0
10.3
4.0
11.5
1.7
7.9
12.7
28.0
38.6
21.4
3.4
5.9
2.0
26.4
4.1
12.9
18.3
3.9
10.1
31.3
4.6
10.1

93
48
218
68
49
356
65
97
167
146
59
84
187
146
115
98
37
98
172
158
54
71
178
174
71
131
39
28

180
90
346
143
105
651
134
190
360
297
112
151
322
257
148
193
57
181
369
252
104
132
333
360
116
226
86
56

330
161
571
291
208
1089
259
332
677
519
195
280
492
428
217
321
95
323
752
418
192
232
565
621
204
328
162
118

511
268
841
503
350
1688
427
494
1187
835
318
425
722
649
310
498
138
490
1338
611
273
385
893
1003
315
454
268
240

709
413
1111
790
562
2344
620
660
1689
1261
501
566
975
860
412
720
198
670
1969
752
370
521
1190
1364
399
598
385
503

1151
717
1645
1311
919
3539
1017
1008
2971
2131
830
933
1476
1415
614
1213
335
1072
3399
1192
607
895
1993
2220
656
1027
697
1096

1763
1260
2345
2119
1361
4748
1632
1522
4724
3441
1365
1421
2214
2339
977
1989
513
1732
5379
1885
1011
1525
3114
3292
989
1554
1148
2426

1484
1103
2056
2139
1346
4551
1351
1244
4007
2975
1215
1149
1705
1783
744
1617
423
1287
3921
1492
757
1185
2462
2324
790
1191
949
2321

1355
2868
2755
4762
4988
3702
1049
1723
1011
2356
1684
3264
1392
840
2873
1673

1283
2829
2715
4397
4798
3476
875
1392
896
1871
1324
2424
1064
600
2009
1180

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

247
248
249
250
251
252
254
255
256
257
258
259
260
262
264
265
266
268
269
270
271
272
273
274
276
277
279
280

Brushy Canyon Formation sandstone (roadcut north side of Rte 62: N31°51.769' W104°50.307' ±19ft)
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

001
071
072
073
074
075
078
079
080
081
082
083
084
085
086
087

1/15/2014
0.01
15.34
6:06:40 PM
0.51 (Run:3.8
1)
1/13/2014
0.92
46.82
11:47:16 9.49
PM (Run:
29.21)
1/13/2014
0.57
13.66
11:48:58 8.31
PM (Run:
26.11)
1/13/2014
0.34
25.85
11:50:40 9.35
PM (Run:
33.31)
1/13/2014
0.25
27.32
11:52:22 9.29
PM (Run:
28.11)
1/13/2014
0.75
24.78
11:54:04
11.10
PM (Run:
35.21)
1/13/2014
0.01
25.89
11:59:08 0.37
PM (Run:
1.81)
1/14/2014
0.02
28.07
12:00:50 0.71
AM (Run:
4.11)
1/14/2014
0.01
36.17
12:02:32 0.57
AM (Run:
2.61)
1/14/2014
0.01
24.30
12:07:52 0.28
AM (Run:
2.61)
1/14/2014
0.01
22.78
12:09:33 0.28
AM (Run:
2.61)
1/14/2014
0.17
39.81
12:11:15
10.38
AM (Run:
35.81)
1/14/2014
0.02
14.25
12:12:57 0.87
AM (Run:
3.21)
1/14/2014
0.03
35.85
12:14:39 1.27
AM (Run:
4.81)
1/14/2014
0.01
30.14
12:16:21 0.41
AM (Run:
2.51)
1/14/2014
0.03
20.31
12:18:03 1.12
AM (Run:
6.31)

18.9
124.2
96.5
152.5
127.6
139.4
10.3
30.0
14.7
25.4
17.7
139.9
26.1
25.8
29.2
31.8

6.2
108.0
38.8
33.9
30.7
22.4
3.3
5.5
4.9
1.5
5.4
33.2
7.1
17.9
4.4
2.9

69
344
262
571
406
355
45
100
49
105
68
342
73
73
110
101

141
473
415
898
743
616
95
194
86
205
137
518
133
109
235
176

268
780
652
1371
1213
973
165
357
135
382
267
768
251
174
439
289

435
1144
995
2064
1821
1427
268
544
216
620
442
1129
372
261
712
441

622
1535
1340
2751
2517
1905
415
761
332
925
662
1493
549
329
1110
646

908
2155
2040
3781
3612
2697
661
1207
611
1476
1095
2174
871
549
1854
1056

BCMC12-3B L 088

1/14/2014
0.03
12:19:45
4.70
1.27
AM (Run:
7.11)

58.1

9.8

200

342

546

796

1050

1599

2390

1760

BCMC12-3B L 089

1/14/2014
0.15
95.30
12:21:26 5.98
AM (Run:
24.01) 110.4

65.7

281

468

751

1102

1521

2465

3833

2793

BCMC12-3B L 090
BCMC12-3B L 091

1/14/2014
0.02
30.12
12:23:08 0.71
AM (Run:
3.71)
1/14/2014
0.03
14.46
12:31:51 1.23
AM (Run:
3.41)

29.6
22.5

6.6
6.3

87
76

178
145

306
231

502
359

717
573

1209
978

1876
1626

1379
1330

BCMC12-3B L 092

1/14/2014
0.03
17.54
12:33:33 1.47
AM (Run:
4.91)

24.4

6.8

82

160

267

439

630

1040

1628

1194

BCMC12-3B L 093

1/14/2014
0.09
87.30
12:35:15 3.51
AM (Run:
14.41)

73.9

52.4

216

398

647

971

1357

2158

3486

2499

BCMC12-3B L 094

1/14/2014
0.07
66.66
12:36:57 2.63
AM (Run:
10.01)

44.2

33.2

131

236

380

595

844

1405

2301

1730

BCMC12-3B L 095
BCMC12-3B L 096

1/14/2014
0.49
11.34
12:38:39 1.41
AM (Run:
5.41)
1/14/2014
0.06
22.58
12:40:21 1.59
AM (Run:
5.81)

27.7
27.5

9.8
15.2

99
96

170
161

292
277

441
440

639
606

1047
980

1695
1635

1348
1181

BCMC12-3B L 097

1/14/2014
0.09
16.83
12:42:02 3.43
AM (Run:
15.21)

62.2

11.6

200

334

551

831

1175

1877

2780

1967

BCMC12-3B L 098

1/14/2014
0.19
46.22
12:43:44 3.52
AM (Run:
14.11)

67.6

52.2

171

269

432

608

835

1290

2021

1478

BCMC12-3B L 099

1/14/2014
0.27
16.55
12:45:26 2.91
AM (Run:
10.11)

47.5

12.1

142

236

438

681

947

1532

2495

1887

BCMC12-3B L 100
BCMC12-3B L 101

1/14/2014
0.00
20.60
12:47:08 0.16
AM (Run:
1.21)
1/14/2014
0.02
12:52:28
5.48
0.64
AM (Run:
2.31)

13.7
21.4

2.1
4.4

51
77

134
131

252
247

426
402

664
600

1190
956

1976
1605

1438
1332

BCMC12-3B L 102

1/14/2014
0.04
12:54:10
8.87
1.50
AM (Run:
6.31)

35.5

6.8

98

165

281

421

579

910

1531

1141

BCMC12-3B L 104

1/14/2014
0.01
40.99
12:57:34 0.25
AM (Run:
2.81)

24.7

5.3

81

156

295

490

748

1245

2030

1666

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

1/14/2014
0.04
23.48
12:59:16 1.76
AM
1/14/2014
0.47
37.39
1:00:58 AM
4.49
1/14/2014
0.01
20.73
1:02:39 AM
0.25
1/14/2014
0.01
26.62
1:04:21 AM
0.30
1/14/2014
0.13
33.21
1:06:03 AM
5.75
1/14/2014
0.00
1:07:45
5.79
AM
0.05
1/14/2014
0.01
18.77
1:16:28 AM
0.45
1/14/2014
0.01
30.78
1:18:10 AM
0.41
1/14/2014
0.21
35.39
1:19:52 AM
1.85
1/14/2014
0.05
27.94
1:21:33 AM
1.95
1/14/2014
0.02
17.62
1:23:15 AM
0.66
1/14/2014
0.02
22.34
1:24:57 AM
0.64
1/14/2014
0.04
32.51
1:26:39 AM
1.70
1/14/2014
1.66
36.92
1:28:21 15.83
AM
1/14/2014
0.19
24.31
1:30:03 AM
6.86
1/14/2014
0.03
28.47
1:31:45 AM
1.17
1/14/2014
0.20
33.94
1:37:05 AM
8.01
1/14/2014
0.26
25.83
1:38:47 AM
7.56
1/14/2014
0.02
25.19
1:40:29 AM
0.79
1/14/2014
0.09
26.62
1:42:11 AM
3.52
1/14/2014
0.07
30.62
1:43:53 AM
2.80
1/14/2014
0.76
32.96
1:45:34 AM
1.01
1/14/2014
0.01
25.51
1:47:16 AM
0.43
1/14/2014
0.01
1:48:58
9.82
AM
0.58
1/14/2014
0.01
26.69
1:50:40 AM
0.55
1/14/2014
0.06
31.06
1:52:22 AM
2.51
1/14/2014
0.01
2:01:07
7.92
AM
0.43
1/14/2014
0.03
25.26
2:04:30 AM
1.26
1/14/2014
0.02
40.96
2:06:12 AM
0.82
1/14/2014
0.01
57.44
2:09:36 AM
0.41
1/14/2014
0.02
2:12:59
8.81
AM
0.87
1/14/2014
0.18
70.21
2:16:22 AM
5.17
1/14/2014
0.21
16.15
2:21:43 AM
7.18
1/14/2014
0.01
15.29
2:23:25 AM
0.40
1/14/2014
0.02
12.26
2:25:07 AM
0.86
1/14/2014
0.75
15.84
2:26:49 10.03
AM
1/14/2014
0.17
20.00
2:31:55 AM
3.29
1/14/2014
0.02
11.87
2:33:36 AM
0.68
1/14/2014
0.21
16.33
2:35:18 AM
4.48
1/14/2014
0.03
16.80
2:36:59 AM
1.00
1/14/2014
0.01
2:45:43
4.88
AM
0.26
1/14/2014
0.02
29.73
2:47:24 AM
0.62
1/14/2014
0.01
27.11
2:49:07 AM
0.57
1/14/2014
0.17
14.26
2:50:49 AM
6.77
1/14/2014
0.20
51.89
2:52:30 AM
6.05
1/14/2014
0.02
25.44
2:54:12 AM
0.76

59.6
56.9
10.5
8.6
189.2
6.7
18.1
28.3
34.0
62.2
16.3
23.9
50.7
186.2
130.0
64.0
107.1
90.0
21.3
84.4
49.8
32.7
28.6
12.2
24.2
49.8
15.3
37.7
17.4
21.9
20.9
101.3
95.7
19.6
9.6
101.0
87.0
26.0
88.6
17.6
11.8
33.3
24.3
73.2
99.2
25.9

6.0
17.9
10.4
8.0
107.9
5.5
8.7
8.1
28.5
26.6
14.6
2.0
3.7
24.6
23.5
9.0
20.1
10.8
10.7
21.0
4.5
4.7
5.5
3.0
4.6
6.6
5.9
5.8
11.2
5.1
4.1
73.3
36.4
11.0
9.4
28.0
15.3
6.4
19.9
5.9
11.8
7.2
7.4
33.0
99.3
6.0

196
153
31
36
644
33
46
127
96
175
43
117
260
775
371
267
429
326
77
267
155
140
114
54
92
131
58
93
56
100
58
266
255
50
30
280
256
90
240
65
44
102
106
192
223
101

388
279
45
55
1169
65
98
267
175
249
65
231
539
1250
642
519
805
594
123
519
275
271
233
100
171
236
110
184
84
194
101
431
399
93
48
480
471
150
404
121
103
192
185
302
337
179

646
483
81
87
1888
142
160
534
279
352
96
429
1008
1967
1062
912
1300
949
201
876
485
468
418
166
289
418
194
304
119
339
171
639
629
144
76
807
781
189
590
239
195
323
298
457
482
280

1035
794
116
141
2832
250
279
975
420
498
164
718
1652
3150
1659
1480
2102
1461
328
1379
772
765
632
282
492
607
286
455
185
569
254
916
908
211
112
1208
1177
266
856
394
323
530
477
642
672
431

1422
1114
181
190
3818
430
464
1458
577
679
221
1112
2333
4250
2322
2050
2925
2050
460
1961
1088
1147
912
447
699
837
389
658
247
840
376
1229
1216
313
178
1587
1550
326
1137
559
483
771
679
852
840
597

2187
1789
312
323
5352
775
754
2148
880
949
380
1756
3096
5618
3307
2693
4012
2975
713
2858
1683
1788
1368
698
1147
1260
602
1071
409
1514
601
1919
1821
518
323
2434
2306
526
1752
924
846
1257
1082
1313
1407
878

3139
2750
538
537
7331
1357
1228
2768
1318
1295
530
2434
3966
7150
4201
3564
5167
3827
1032
3852
2572
2698
1949
1126
1813
1883
927
1707
666
2631
978
2901
2850
893
567
3869
3441
742
2712
1546
1476
1898
1658
1981
2109
1338

2296
2124
446
476
5577
1423
1279
2596
1350
1298
662
2197
3526
7042
3927
3131
4717
3523
1061
3180
2148
2192
1509
941
1455
1305
659
1260
522
1952
776
2201
2066
692
490
2692
2295
514
1889
1147
1194
1370
1304
1435
1836
1105

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
133
134
136
138
140
141
142
143
144
147
148
149
150
151
152
153
154
155
156

(Run:
7.31)
(Run:
11.8
1)
(Run:2.0
1)
(Run:1.3
1)
(Run:
24.8
1)
(Run:0.5
1)
(Run:2.5
1)
(Run:2.6
1)
(Run:
10.6
1)
(Run:
10.0
1)
(Run:2.4
1)
(Run:2.7
1)
(Run:8.1
1)
(Run:
44.1
1)
(Run:
27.8
1)
(Run:6.8
1)
(Run:
26.6
1)
(Run:
23.2
1)
(Run:2.3
1)
(Run:
14.0
1)
(Run:9.8
1)
(Run:5.7
1)
(Run:4.3
1)
(Run:1.6
1)
(Run:4.2
1)
(Run:8.4
1)
(Run:2.5
1)
(Run:6.2
1)
(Run:4.0
1)
(Run:2.2
1)
(Run:3.6
1)
(Run:
18.8
1)
(Run:
23.9
1)
(Run:2.4
1)
(Run:2.0
1)
(Run:
30.0
1)
(Run:
14.2
1)
(Run:2.9
1)
(Run:
19.0
1)
(Run:1.6
1)
(Run:1.6
1)
(Run:5.0
1)
(Run:3.5
1)
(Run:
19.6
1)
(Run:
23.8
1)
(Run:2.2
1)

BCMC12-3B L 157

1/14/2014
0.02
21.07
2:55:54 AM
0.88 (Run:3.8
1)

20.2

6.5

69

132

246

371

595

968

1591

1364

BCMC12-3B L 158

1/14/2014
0.03
22.59
2:57:36 AM
1.32 (Run:6.1
1)

26.3

9.7

115

179

326

507

758

1171

1778

1486

BCMC12-3B L 159
BCMC12-3B L 161

1/14/2014
1.01
25.50
2:59:17 AM
9.47 (Run:
25.2
1)
1/14/2014
0.52
32.90
3:06:21 AM
9.97 (Run:
31.3
1)

88.1
124.2

18.9
21.9

277
365

440
577

671
898

1030
1374

1422
1906

2098
2714

3086
3735

2553
3221

BCMC12-3B L 162

1/14/2014
0.02
54.60
3:08:02 AM
0.89 (Run:7.3
1)

52.6

14.1

230

427

689

1098

1663

2389

3181

2902

BCMC12-3B L 163

1/14/2014
0.03
19.69
3:09:44 AM
2.28 (Run:7.5
1)

37.3

13.4

134

259

449

739

1113

1747

2501

2449

BCMC12-3B L 164

1/14/2014
0.04
23.51
3:11:26 AM
1.74 (Run:3.7
1)

37.3

15.4

146

256

422

655

994

1430

1813

1843

BCMC12-3B L 165
BCMC12-3B L 166

1/14/2014
0.10
19.57
3:13:08 AM
1.09 (Run:2.0
1)
1/14/2014
0.01
44.46
3:14:50 AM
0.49 (Run:1.5
1)

7.9
20.9

7.0
11.1

34
89

52
161

92
295

149
481

257
769

431
1265

634
1852

713
1926

BCMC12-3B L 167

1/14/2014
0.02
11.44
3:16:31 AM
0.80 (Run:3.4
1)

32.0

5.6

113

191

345

551

777

1100

1524

1467

BCMC12-3B L 168

1/14/2014
0.16
57.45
3:18:12 AM
2.74 (Run:
12.2
1)

49.4

38.8

132

198

325

454

614

905

1278

1236

BCMC12-3B L 169

1/14/2014
0.37
33.05
3:19:54 AM
8.76 (Run:
36.5
1)

140.7

15.3

390

631

974

1452

1998

2815

3766

3686

BCMC12-3B L 170
BCMC12-3B L 171

1/14/2014
0.01
10.43
3:21:37 AM
0.60 (Run:2.4
1)
1/14/2014
0.01
19.48
3:30:21 AM
0.48 (Run:2.0
1)

19.9
13.5

20.1
9.4

72
54

127
95

232
158

372
271

553
414

896
645

1317
932

1400
971

BCMC12-3B L 172

1/14/2014
0.11
16.64
3:32:03 AM
6.74 (Run:
26.1
1)

107.1

26.4

331

587

932

1413

1922

2704

3647

3329

BCMC12-3B L 173

1/14/2014
0.25
10.56
3:33:44 AM
0.86 (Run:4.1
1)

27.9

9.3

114

192

322

496

731

1072

1601

1440

BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B
BCMC12-3B

1/14/2014
0.05
29.38
3:35:26
1/14/2014
0.05
15.40
3:37:08
1/14/2014
0.03
42.66
3:38:50
1/14/2014
0.16
61.99
3:40:32
1/14/2014
0.02
16.55
3:42:14
1/14/2014
0.01
21.26
3:43:55
1/14/2014
0.01
3:45:37
6.71
1/14/2014
0.01
19.22
3:50:59
1/14/2014
0.15
40.12
3:52:41
1/14/2014
0.01
29.54
3:54:23
1/14/2014
0.02
11.28
3:56:05
1/14/2014
0.02
69.89
3:57:47
1/14/2014
0.22
21.15
3:59:28
1/14/2014
0.02
21.98
4:01:10
1/14/2014
0.32
31.91
4:02:52
1/14/201412.79
4:15:02
1/14/2014
0.03
30.06
4:16:44
1/14/2014
0.02
27.18
4:18:25
1/14/2014
0.03
36.91
4:20:07
1/14/2014
0.01
18.92
4:21:49
1/14/2014
0.01
20.40
4:23:31
1/14/2014
0.16
10.60
4:25:12
1/14/2014
0.45
13.67
4:26:54
1/14/2014
0.16
30.19
4:28:36
1/14/2014
2.38
24.94
4:30:18
1/14/2014
0.01
22.90
4:35:40
1/14/2014
0.02
4:42:28
9.65
1/14/2014
0.01
18.15
4:44:10
1/14/2014
0.01
26.42
4:45:52
1/14/2014
0.08
17.68
4:47:34
1/14/2014
0.92
32.28
4:49:15

42.2
33.1
42.1
99.7
29.6
18.7
17.7
18.9
69.0
21.2
19.8
8.2
42.3
24.3
101.0
10.2
23.7
14.1
35.2
17.6
11.2
21.8
71.8
107.8
77.3
19.8
26.5
13.1
31.9
78.1
45.3

49.3
10.2
4.0
9.7
7.6
2.8
6.4
0.9
49.3
5.2
2.4
8.8
14.0
8.4
12.9
8.8
6.5
11.6
6.2
1.1
1.5
3.8
49.4
17.7
8.1
2.2
3.2
6.5
5.7
24.4
13.5

121
125
150
388
111
67
72
80
186
79
61
32
124
83
288
40
103
55
114
75
43
68
213
276
223
78
79
75
158
244
228

184
222
310
712
207
128
149
166
302
145
100
79
210
130
474
71
195
87
191
139
88
144
343
481
396
145
129
167
337
431
430

306
380
577
1158
351
213
264
316
428
259
156
154
339
200
800
133
349
142
348
269
159
243
581
753
681
259
196
322
677
673
769

439
596
947
1700
550
310
435
530
585
404
253
296
485
282
1266
220
575
222
525
422
252
378
934
1074
1015
422
304
553
1227
1021
1247

650
791
1449
2252
776
412
649
782
735
570
358
499
637
385
1774
328
843
317
754
665
402
570
1311
1433
1379
646
421
862
1894
1402
1815

1005
1209
2263
3131
1216
640
1051
1294
1089
982
572
932
1074
590
2634
604
1509
543
1208
1035
693
952
2119
2190
2205
1064
656
1409
3181
2134
2730

1639
1768
3562
4334
1783
988
1702
2085
1678
1603
981
1775
1650
935
3903
1078
2463
926
1954
1744
1257
1532
3508
3198
3270
1764
1042
2222
5291
3049
3889

1504
1445
2814
3243
1343
757
1412
1566
1211
1167
786
1426
1246
682
2607
871
1797
668
1302
1192
906
1103
2521
2093
2254
1338
930
1897
4891
2717
3538

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
191
192
193
194
195
196
197
198
199
200
201
205
206
207
208
209

AM
2.97
AM
1.94
AM
1.23
AM
4.39
AM
0.75
AM
0.37
AM
0.43
AM
0.38
AM
5.14
AM
0.53
AM
0.95
AM
0.33
AM
3.08
AM
0.75
AM
8.38
AM
0.10
AM
1.32
AM
0.74
AM
1.23
AM
0.58
AM
0.31
AM
0.60
AM
5.76
AM
6.81
AM
4.45
AM
0.32
AM
0.99
AM
0.38
AM
0.50
AM
3.09
AM
0.84

(Run:
10.3
1)
(Run:7.8
1)
(Run:5.6
1)
(Run:
15.6
1)
(Run:3.8
1)
(Run:2.1
1)
(Run:2.4
1)
(Run:1.5
1)
(Run:
16.5
1)
(Run:3.5
1)
(Run:4.7
1)
(Run:1.4
1)
(Run:
10.0
1)
(Run:2.5
1)
(Run:
27.8
1)
(Run:0.5
1)
(Run:4.6
1)
(Run:3.1
1)
(Run:7.2
1)
(Run:1.7
1)
(Run:1.8
1)
(Run:2.9
1)
(Run:
17.4
1)
(Run:
25.8
1)
(Run:
13.1
1)
(Run:2.3
1)
(Run:5.4
1)
(Run:1.1
1)
(Run:3.1
1)
(Run:
14.0
1)
(Run:4.9
1)

OCR | Wellesley College Digital Repository (2024)
Top Articles
[PDF] Post-Graduation Activity Report - Free Download PDF
Is Omari Mccree Still Alive
Drury Inn & Suites Bowling Green
Craigslist In Fredericksburg
Tribune Seymour
Lesson 1 Homework 5.5 Answer Key
Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
Yesteryear Autos Slang
Mission Impossible 7 Showtimes Near Regal Bridgeport Village
Keniakoop
Kinkos Whittier
Dallas’ 10 Best Dressed Women Turn Out for Crystal Charity Ball Event at Neiman Marcus
Maplestar Kemono
Immortal Ink Waxahachie
Webcentral Cuny
Where to Find Scavs in Customs in Escape from Tarkov
1773X To
Candy Land Santa Ana
Exterior insulation details for a laminated timber gothic arch cabin - GreenBuildingAdvisor
Nhl Tankathon Mock Draft
Healthier Homes | Coronavirus Protocol | Stanley Steemer - Stanley Steemer | The Steem Team
67-72 Chevy Truck Parts Craigslist
Xfinity Outage Map Fredericksburg Va
Craigslist Apartments Baltimore
Ecampus Scps Login
Defending The Broken Isles
Dr. Nicole Arcy Dvm Married To Husband
Sams Gas Price Sanford Fl
UAE 2023 F&B Data Insights: Restaurant Population and Traffic Data
Valley Craigslist
Syracuse Jr High Home Page
Mrstryst
Six Flags Employee Pay Stubs
Stolen Touches Neva Altaj Read Online Free
Shaman's Path Puzzle
The Wichita Beacon from Wichita, Kansas
Green Bay Crime Reports Police Fire And Rescue
Powerball lottery winning numbers for Saturday, September 7. $112 million jackpot
Gwu Apps
Solemn Behavior Antonym
Louisville Volleyball Team Leaks
Umiami Sorority Rankings
Admissions - New York Conservatory for Dramatic Arts
Ksu Sturgis Library
Craigs List Palm Springs
Academic Notice and Subject to Dismissal
Avatar: The Way Of Water Showtimes Near Jasper 8 Theatres
Lesly Center Tiraj Rapid
Sams Gas Price San Angelo
Fine Taladorian Cheese Platter
The 13 best home gym equipment and machines of 2023
Latest Posts
Article information

Author: Mr. See Jast

Last Updated:

Views: 5905

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mr. See Jast

Birthday: 1999-07-30

Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

Phone: +5023589614038

Job: Chief Executive

Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.